Simbody  3.7
SimTK::Vec< M, ELT, STRIDE > Class Template Reference

This is a fixed-length column vector designed for no-overhead inline computation. More...

Classes

struct  EltResult
 
struct  Result
 
struct  Substitute
 Shape-preserving element substitution (always packed). More...
 

Public Types

Advanced

These are obscure members of Vec that are used for template metaprogramming and can be ignored by most users.

enum  {
  NRows = M,
  NCols = 1,
  NPackedElements = M,
  NActualElements = M * STRIDE,
  NActualScalars = CNT<E>::NActualScalars * NActualElements,
  RowSpacing = STRIDE,
  ColSpacing = NActualElements,
  ImagOffset = NTraits<ENumber>::ImagOffset,
  RealStrideFactor = 1,
  ArgDepth,
  IsScalar = 0,
  IsULessScalar = 0,
  IsNumber = 0,
  IsStdNumber = 0,
  IsPrecision = 0,
  SignInterpretation = CNT<E>::SignInterpretation
}
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef ELT E
 Element type of this Vec. More...
 
typedef CNT< E >::TNeg ENeg
 Negated version of this Vec's element type; ENeg==negator< E >. More...
 
typedef CNT< E >::TWithoutNegator EWithoutNegator
 Element type, stripped of negator<> if it has one. More...
 
typedef CNT< E >::TReal EReal
 Type showing just the real part of an element of this Vec if elements are complex; otherwise just the element type. More...
 
typedef CNT< E >::TImag EImag
 Type showing the imaginary part of an element of this Vec as real, if elements are complex; otherwise a type that can hold a zero of the element type. More...
 
typedef CNT< E >::TComplex EComplex
 Type that elements would have if complex, if E is currently real; otherwise just the element type E. More...
 
typedef CNT< E >::THerm EHerm
 Type of the Hermitian transpose of an element of this Vec. More...
 
typedef CNT< E >::TPosTrans EPosTrans
 Type of a positional transpose of an element of this Vec. More...
 
typedef CNT< E >::TSqHermT ESqHermT
 Type of the expression ~E*E (default vector and matrix square; symmetric). More...
 
typedef CNT< E >::TSqTHerm ESqTHerm
 Type of the expression E*~E ("row square"; symmetric). More...
 
typedef CNT< E >::TSqrt ESqrt
 Type required to hold the result of sqrt(E). More...
 
typedef CNT< E >::TAbs EAbs
 Type required to hold the result of abs(E). More...
 
typedef CNT< E >::TStandard EStandard
 Return type of standardize(E) method; a packed type that can hold the value of an element after eliminating negator and conjugate types. More...
 
typedef CNT< E >::TInvert EInvert
 Packed type that can hold the value returned from invert(E), the inverse type of an element. More...
 
typedef CNT< E >::TNormalize ENormalize
 Packed type that can hold the value returned from normalize(E). More...
 
typedef CNT< E >::Scalar EScalar
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef CNT< E >::ULessScalar EULessScalar
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef CNT< E >::Number ENumber
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef CNT< E >::StdNumber EStdNumber
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef CNT< E >::Precision EPrecision
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef CNT< E >::ScalarNormSq EScalarNormSq
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef Vec< M, E, STRIDE > T
 The type of this Vec. More...
 
typedef Vec< M, ENeg, STRIDE > TNeg
 Type this Vec would have if its elements were interpreted as negated. More...
 
typedef Vec< M, EWithoutNegator, STRIDE > TWithoutNegator
 Type of this Vec with negator removed from its element type, if the element is negated. More...
 
typedef Vec< M, EReal, STRIDE *CNT< E >::RealStrideFactorTReal
 Type of this Vec cast to show only the real part of its element; this might affect the stride. More...
 
typedef Vec< M, EImag, STRIDE *CNT< E >::RealStrideFactorTImag
 Type of this Vec cast to show only the imaginary part of its element; this might affect the stride. More...
 
typedef Vec< M, EComplex, STRIDE > TComplex
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef Row< M, EHerm, STRIDE > THerm
 Type of this Vec after casting to its Hermitian transpose; that is, the Vec turns into a Row and each element turns into its Hermitian transpose. More...
 
typedef Row< M, E, STRIDE > TPosTrans
 Type of this Vec after casting to its positional transpose; that is, the Vec turns into a Row but the element type remains unchanged. More...
 
typedef E TElement
 Element type of this Vec. More...
 
typedef E TRow
 Type of a row of this CNT object (for a Vec, just its element type). More...
 
typedef Vec TCol
 Type of a column of this CNT object (for a Vec, the whole thing). More...
 
typedef Vec< M, ESqrt, 1 > TSqrt
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef Vec< M, EAbs, 1 > TAbs
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef Vec< M, EStandard, 1 > TStandard
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef Row< M, EInvert, 1 > TInvert
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef Vec< M, ENormalize, 1 > TNormalize
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef ESqHermT TSqHermT
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef SymMat< M, ESqTHermTSqTHerm
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef EScalar Scalar
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef EULessScalar ULessScalar
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef ENumber Number
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef EStdNumber StdNumber
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef EPrecision Precision
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 
typedef EScalarNormSq ScalarNormSq
 These compile-time constants are required of every Composite Numerical Type (CNT). More...
 

Public Member Functions

ScalarNormSq scalarNormSqr () const
 Scalar norm square is sum( conjugate squares of all underlying scalars ), where conjugate square of scalar s is conj(s)*s. More...
 
TSqrt sqrt () const
 Elementwise square root; that is, the return value has the same length as this Vec but with each element replaced by whatever it thinks its square root is. More...
 
TAbs abs () const
 Elementwise absolute value; that is, the return value has the same dimension as this Vec but with each element replaced by whatever it thinks its absolute value is. More...
 
TStandard standardize () const
 Return a copy of this Vec but with the underlying scalar type converted (if necessary) to one of the C++ standard real or complex floating point types. More...
 
EStandard sum () const
 Sum just adds up all the elements into a single return element that is the same type as this Vec's elements except standardized to use one of the C++ built-in real or complex types as its underlying scalars. More...
 
 Vec ()
 Default construction initializes Vec's elements to NaN when debugging but leaves them uninitialized garbage otherwise, so declarations have zero cost in Release builds. More...
 
 Vec (const Vec &src)
 Copy constructor copies the logically-included elements from the source Vec; gaps due to stride are not accessed in either source or destination. More...
 
Vecoperator= (const Vec &src)
 Copy assignment operator copies the logically-included elements from the source Vec; gaps due to stride are not accessed in either source or destination. More...
 
template<int SS>
 Vec (const Vec< M, E, SS > &src)
 This is an implicit conversion from a Vec of the same length and element type but with a different stride. More...
 
template<int SS>
 Vec (const Vec< M, ENeg, SS > &src)
 This is an implicit conversion from a Vec of the same length and negated element type (possibly with a different stride). More...
 
template<class EE , int SS>
 Vec (const Vec< M, EE, SS > &src)
 Construct a Vec from a Vec of the same length, with any stride. More...
 
 Vec (const E &e)
 Construction from a single value of this Vec's element type assigns that value to each element. More...
 
 Vec (const ENeg &ne)
 Construction from a single value of this Vec's negated element type assigns that value to each element, requiring floating point negation to be performed once to compute the type-E representation of the type negator<E> value provided. More...
 
 Vec (int i)
 Given an int value, turn it into a suitable floating point number, convert that to element type E and then feed that to the above single-element constructor. More...
 
 Vec (const E &e0, const E &e1)
 Construct a Vec<2,E> from two elements of type E, etc. More...
 
 Vec (const E &e0, const E &e1, const E &e2)
 
 Vec (const E &e0, const E &e1, const E &e2, const E &e3)
 
 Vec (const E &e0, const E &e1, const E &e2, const E &e3, const E &e4)
 
 Vec (const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5)
 
 Vec (const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6)
 
 Vec (const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7)
 
 Vec (const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8)
 
template<class EE >
 Vec (const EE *p)
 Construction from a pointer to elements of any type EE assumes we're pointing at a C++ array of EE's of the right length, and that EE is assignment compatible with this Vec's element type E. More...
 
template<class EE >
Vecoperator= (const EE *p)
 Assignment to a pointer to elements of any type EE assumes we're pointing at a C++ array of EE's of the right length, and that EE is assignment compatible with this Vec's element type E. More...
 
template<class EE , int SS>
Vecoperator= (const Vec< M, EE, SS > &vv)
 Assignment to a conforming Vec, of any element type and stride, provided that the element types are assignment-compatible. More...
 
template<class EE , int SS>
Vecoperator+= (const Vec< M, EE, SS > &r)
 Add in a conforming Vec, of any element type and stride, provided that the element types are addition-compatible. More...
 
template<class EE , int SS>
Vecoperator+= (const Vec< M, negator< EE >, SS > &r)
 Add in a conforming Vec, of any negated element type and stride, provided that the element types are addition-compatible. More...
 
template<class EE , int SS>
Vecoperator-= (const Vec< M, EE, SS > &r)
 Subtract off a conforming Vec, of any element type and stride, provided that the element types are addition-compatible. More...
 
template<class EE , int SS>
Vecoperator-= (const Vec< M, negator< EE >, SS > &r)
 Subtract off a conforming Vec, of any negated element type and stride, provided that the element types are addition-compatible. More...
 
template<class EE , int SS>
Vec< M, typename CNT< E >::template Result< EE >::Add > conformingAdd (const Vec< M, EE, SS > &r) const
 Vector addition – use operator+ instead. More...
 
template<class EE , int SS>
Vec< M, typename CNT< E >::template Result< EE >::Sub > conformingSubtract (const Vec< M, EE, SS > &r) const
 Vector subtraction – use operator- instead. More...
 
template<class EE , int SS>
Mat< M, M, typename CNT< E >::template Result< EE >::Mul > conformingMultiply (const Row< M, EE, SS > &r) const
 Same as outer product (m = col*row) – use operator* or outer() instead. More...
 
template<class EE , int SS>
Vec< M, typename CNT< E >::template Result< EE >::Mul > elementwiseMultiply (const Vec< M, EE, SS > &r) const
 Elementwise multiply (Matlab " .* " operator). More...
 
template<class EE , int SS>
Vec< M, typename CNT< E >::template Result< EE >::Dvd > elementwiseDivide (const Vec< M, EE, SS > &r) const
 Elementwise divide (Matlab " ./ " operator). More...
 
const Eoperator[] (int i) const
 Select an element of this Vec and return a const reference to it. More...
 
const Eoperator() (int i) const
 Same as const operator[] above. More...
 
Eoperator[] (int i)
 Select an element of this Vec and return a writable reference to it. More...
 
Eoperator() (int i)
 Same as non-const operator[] above. More...
 
ScalarNormSq normSqr () const
 
CNT< ScalarNormSq >::TSqrt norm () const
 
TNormalize normalize () const
 If the elements of this Vec are scalars, the result is what you get by dividing each element by the norm() calculated above. More...
 
TInvert invert () const
 This method is not supported for Vec objects. More...
 
const Vecoperator+ () const
 Unary plus does nothing. More...
 
const TNegoperator- () const
 Unary minus recasts this Vec to a type that has the opposite interpretation of the sign but is otherwise identical, so no computation or copying is performed here. More...
 
TNegoperator- ()
 Recast to negated type and return a writable reference; writing to this will cause the negated result to be placed in the original Vec. More...
 
const THermoperator~ () const
 The Hermitian transpose operator recasts this Vec to a type that specifies the opposite storage order (row vs. column) then returns a reference, so no computation or copying is performed here. More...
 
THermoperator~ ()
 Recast to Hermitian transposed type and return a writable reference; the effect is that writing to elements of the result affects the transposed element of the original Vec. More...
 
const TNegnegate () const
 Non-operator version of unary negation; just a recast. More...
 
TNegupdNegate ()
 Non-operator version of unary negation; recasts and returns a writable reference. More...
 
const THermtranspose () const
 Non-operator version of Hermitian transpose; just a recast. More...
 
THermupdTranspose ()
 Non-operator version of Hermitian transpose; recasts and returns a writable reference. More...
 
const TPosTranspositionalTranspose () const
 Positional transpose turns this Vec into a Row but does not transpose the individual elements. More...
 
TPosTransupdPositionalTranspose ()
 Positional transpose returning a writable reference. More...
 
const TRealreal () const
 Return a reference to the real portion of this Vec if it has complex elements; otherwise the type doesn't change. More...
 
TRealreal ()
 Recast to show only the real portion of this Vec and return a writable reference. More...
 
const TImagimag () const
 Return a reference to the imaginary portion of this Vec if it has complex elements; otherwise the type doesn't change. More...
 
TImagimag ()
 Recast to show only the imaginary portion of this Vec and return a writable reference. More...
 
const TWithoutNegatorcastAwayNegatorIfAny () const
 Recast to remove negators from this Vec's type if present; this is handy for simplifying operations where we know the sign can be ignored such as squaring. More...
 
TWithoutNegatorupdCastAwayNegatorIfAny ()
 Recast to remove negators from this Vec's type if present and return a writable reference. More...
 
template<class EE >
Vec< M, typename CNT< E >::template Result< EE >::Mul > scalarMultiply (const EE &e) const
 
template<class EE >
Vec< M, typename CNT< EE >::template Result< E >::Mul > scalarMultiplyFromLeft (const EE &e) const
 
template<class EE >
Vec< M, typename CNT< E >::template Result< EE >::Dvd > scalarDivide (const EE &e) const
 
template<class EE >
Vec< M, typename CNT< EE >::template Result< E >::Dvd > scalarDivideFromLeft (const EE &e) const
 
template<class EE >
Vec< M, typename CNT< E >::template Result< EE >::Add > scalarAdd (const EE &e) const
 
template<class EE >
Vec< M, typename CNT< E >::template Result< EE >::Sub > scalarSubtract (const EE &e) const
 
template<class EE >
Vec< M, typename CNT< EE >::template Result< E >::Sub > scalarSubtractFromLeft (const EE &e) const
 
template<class EE >
Vecoperator= (const EE &e)
 
template<class EE >
Vecoperator+= (const EE &e)
 
template<class EE >
Vecoperator-= (const EE &e)
 
template<class EE >
Vecoperator*= (const EE &e)
 
template<class EE >
Vecoperator/= (const EE &e)
 
template<class EE >
VecscalarEq (const EE &ee)
 
template<class EE >
VecscalarPlusEq (const EE &ee)
 
template<class EE >
VecscalarMinusEq (const EE &ee)
 
template<class EE >
VecscalarMinusEqFromLeft (const EE &ee)
 
template<class EE >
VecscalarTimesEq (const EE &ee)
 
template<class EE >
VecscalarTimesEqFromLeft (const EE &ee)
 
template<class EE >
VecscalarDivideEq (const EE &ee)
 
template<class EE >
VecscalarDivideEqFromLeft (const EE &ee)
 
VecscalarEq (int ee)
 
VecscalarPlusEq (int ee)
 
VecscalarMinusEq (int ee)
 
VecscalarTimesEq (int ee)
 
VecscalarDivideEq (int ee)
 
VecscalarMinusEqFromLeft (int ee)
 
VecscalarTimesEqFromLeft (int ee)
 
VecscalarDivideEqFromLeft (int ee)
 
void setToNaN ()
 Set every scalar in this Vec to NaN; this is the default initial value in Debug builds, but not in Release. More...
 
void setToZero ()
 Set every scalar in this Vec to zero. More...
 
template<int MM>
const Vec< MM, ELT, STRIDE > & getSubVec (int i) const
 Extract a const reference to a sub-Vec with size known at compile time. More...
 
template<int MM>
Vec< MM, ELT, STRIDE > & updSubVec (int i)
 Extract a writable reference to a sub-Vec with size known at compile time. More...
 
Vec< M-1, ELT, 1 > drop1 (int p) const
 Return a vector one smaller than this one by dropping the element at the indicated position p. More...
 
template<class EE >
Vec< M+1, ELT, 1 > append1 (const EE &v) const
 Return a vector one larger than this one by adding an element to the end. More...
 
template<class EE >
Vec< M+1, ELT, 1 > insert1 (int p, const EE &v) const
 Return a vector one larger than this one by inserting an element before the indicated one. More...
 
bool isNaN () const
 Return true if any element of this Vec contains a NaN anywhere. More...
 
bool isInf () const
 Return true if any element of this Vec contains a +Infinity or -Infinity somewhere but no element contains a NaN anywhere. More...
 
bool isFinite () const
 Return true if no element of this Vec contains an Infinity or a NaN anywhere. More...
 
template<class E2 , int RS2>
bool isNumericallyEqual (const Vec< M, E2, RS2 > &v, double tol) const
 Test whether this vector is numerically equal to some other vector with the same shape, using a specified tolerance. More...
 
template<class E2 , int RS2>
bool isNumericallyEqual (const Vec< M, E2, RS2 > &v) const
 Test whether this vector is numerically equal to some other vector with the same shape, using a default tolerance which is the looser of the default tolerances of the two objects being compared. More...
 
bool isNumericallyEqual (const ELT &e, double tol=getDefaultTolerance()) const
 Test whether every element of this vector is numerically equal to the given element, using either a specified tolerance or the vector's default tolerance (which is always the same or looser than the default tolerance for one of its elements). More...
 
std::string toString () const
 Print Vec into a string and return it. More...
 
void set (int i, const E &value)
 Variant of operator[] that's scripting friendly to set ith entry. More...
 
const Eget (int i) const
 Variant of operator[] that's scripting friendly to get const reference to ith entry. More...
 

Static Public Member Functions

static int size ()
 The number of elements in this Vec (note that stride does not affect this number.) More...
 
static int nrow ()
 The number of rows in a Vec is the number of elements. More...
 
static int ncol ()
 The number of columns in a Vec is always 1. More...
 
template<int MM>
static const VecgetSubVec (const Vec< MM, ELT, STRIDE > &v, int i)
 Extract a subvector of type Vec from a longer one that has the same element type and stride, and return a const reference to the selected subsequence. More...
 
template<int MM>
static VecupdSubVec (Vec< MM, ELT, STRIDE > &v, int i)
 Extract a subvector of type Vec from a longer one that has the same element type and stride, and return a writable reference to the selected subsequence. More...
 
static const VecgetAs (const ELT *p)
 Recast an ordinary C++ array E[] to a const Vec<M,E,S>; assumes compatible length, stride, and packing. More...
 
static VecupdAs (ELT *p)
 Recast a writable ordinary C++ array E[] to a writable Vec<M,E,S>; assumes compatible length, stride, and packing. More...
 
static Vec< M, ELT, 1 > getNaN ()
 Return a Vec of the same length and element type as this one but with all elements set to NaN. More...
 
static double getDefaultTolerance ()
 For approximate comparisons, the default tolerance to use for a vector is the same as its elements' default tolerance. More...
 

Related Functions

(Note that these are not member functions.)

template<int M, class E , int S>
void writeUnformatted (std::ostream &o, const Vec< M, E, S > &v)
 Specialize for Vec<M,E,S> to delegate to element type E, with spaces separating the elements. More...
 
template<int M, class E , int S>
bool readUnformatted (std::istream &in, Vec< M, E, S > &v)
 Specialize for Vec<M,E,S> to delegate to element type E, with spaces separating the elements. More...
 

Detailed Description

template<int M, class ELT, int STRIDE>
class SimTK::Vec< M, ELT, STRIDE >

This is a fixed-length column vector designed for no-overhead inline computation.

Template Parameters
MThe number of rows in the vector.
ELTThe element type. Must be a composite numerical type (CNT). The default is ELT=Real.
STRIDEThe spacing from one element to the next in memory, as an integer number of elements of type ELT. The default is STRIDE=1.

Usage

The Vec and Vector classes are commonly used to represent tuples of Real values, and have methods like norm() to calculate the vector 2-norm. Use Vec for a small vector whose length is known at compile time; otherwise, use Vector. To collect elements of the same type that do not constitute a tuple, it is more appropriate to use the Array_ container. Some common Vec use cases are provided below.

Construction

The 3-tuple ~[0,0,0] can be created in the following ways:

Vec<3,Real>(0,0,0);
Vec3(0,0,0);
Vec3(0);

Note that the default element type is Real, and that Vec3 is a typedef for Vec<3>; analogous typedefs exist for vectors of up to 9 elements.

Manipulation

Standard arithmetic operators can be used, as well as methods like sum() and normalize(). Here are some usage examples, each of which returns ~[1,2,3]:

Vec9(0,0,0,0,0,1,2,3,0).getSubVec<3>(5);
Vec4(1,2,4,3).drop1(2);
Vec2(2,3).insert1(0,1);
Vec2(1,2).append1(3);

Conversion

It may be necessary to convert between a Vec and a Vector (to interface with FactorQTZ, for instance). In the example below, we print a Vec3 created from a 3-element Vector:

Vector myVector(3);
for (int i=0; i<myVector.size(); ++i) myVector[i]=i+1;
std::cout << Vec3(&myVector[0]) << std::endl;

Converting from a Vec3 to a Vector is also straightforward:

Vec3 myVec3(1,2,3);
std::cout << Vector(myVec3) << std::endl;
See also
Vector_ for handling of large or variable-sized vectors.
Array_, Mat, Matrix_

Member Typedef Documentation

◆ E

template<int M, class ELT, int STRIDE>
typedef ELT SimTK::Vec< M, ELT, STRIDE >::E

Element type of this Vec.

◆ ENeg

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TNeg SimTK::Vec< M, ELT, STRIDE >::ENeg

Negated version of this Vec's element type; ENeg==negator< E >.

◆ EWithoutNegator

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TWithoutNegator SimTK::Vec< M, ELT, STRIDE >::EWithoutNegator

Element type, stripped of negator<> if it has one.

◆ EReal

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TReal SimTK::Vec< M, ELT, STRIDE >::EReal

Type showing just the real part of an element of this Vec if elements are complex; otherwise just the element type.

◆ EImag

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TImag SimTK::Vec< M, ELT, STRIDE >::EImag

Type showing the imaginary part of an element of this Vec as real, if elements are complex; otherwise a type that can hold a zero of the element type.

◆ EComplex

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TComplex SimTK::Vec< M, ELT, STRIDE >::EComplex

Type that elements would have if complex, if E is currently real; otherwise just the element type E.

◆ EHerm

template<int M, class ELT, int STRIDE>
typedef CNT<E>::THerm SimTK::Vec< M, ELT, STRIDE >::EHerm

Type of the Hermitian transpose of an element of this Vec.

◆ EPosTrans

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TPosTrans SimTK::Vec< M, ELT, STRIDE >::EPosTrans

Type of a positional transpose of an element of this Vec.

◆ ESqHermT

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TSqHermT SimTK::Vec< M, ELT, STRIDE >::ESqHermT

Type of the expression ~E*E (default vector and matrix square; symmetric).

◆ ESqTHerm

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TSqTHerm SimTK::Vec< M, ELT, STRIDE >::ESqTHerm

Type of the expression E*~E ("row square"; symmetric).

◆ ESqrt

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TSqrt SimTK::Vec< M, ELT, STRIDE >::ESqrt

Type required to hold the result of sqrt(E).

◆ EAbs

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TAbs SimTK::Vec< M, ELT, STRIDE >::EAbs

Type required to hold the result of abs(E).

◆ EStandard

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TStandard SimTK::Vec< M, ELT, STRIDE >::EStandard

Return type of standardize(E) method; a packed type that can hold the value of an element after eliminating negator and conjugate types.

◆ EInvert

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TInvert SimTK::Vec< M, ELT, STRIDE >::EInvert

Packed type that can hold the value returned from invert(E), the inverse type of an element.

◆ ENormalize

template<int M, class ELT, int STRIDE>
typedef CNT<E>::TNormalize SimTK::Vec< M, ELT, STRIDE >::ENormalize

Packed type that can hold the value returned from normalize(E).

◆ EScalar

template<int M, class ELT, int STRIDE>
typedef CNT<E>::Scalar SimTK::Vec< M, ELT, STRIDE >::EScalar

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ EULessScalar

template<int M, class ELT, int STRIDE>
typedef CNT<E>::ULessScalar SimTK::Vec< M, ELT, STRIDE >::EULessScalar

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ ENumber

template<int M, class ELT, int STRIDE>
typedef CNT<E>::Number SimTK::Vec< M, ELT, STRIDE >::ENumber

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ EStdNumber

template<int M, class ELT, int STRIDE>
typedef CNT<E>::StdNumber SimTK::Vec< M, ELT, STRIDE >::EStdNumber

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ EPrecision

template<int M, class ELT, int STRIDE>
typedef CNT<E>::Precision SimTK::Vec< M, ELT, STRIDE >::EPrecision

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ EScalarNormSq

template<int M, class ELT, int STRIDE>
typedef CNT<E>::ScalarNormSq SimTK::Vec< M, ELT, STRIDE >::EScalarNormSq

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ T

template<int M, class ELT, int STRIDE>
typedef Vec<M,E,STRIDE> SimTK::Vec< M, ELT, STRIDE >::T

The type of this Vec.

◆ TNeg

template<int M, class ELT, int STRIDE>
typedef Vec<M,ENeg,STRIDE> SimTK::Vec< M, ELT, STRIDE >::TNeg

Type this Vec would have if its elements were interpreted as negated.

◆ TWithoutNegator

template<int M, class ELT, int STRIDE>
typedef Vec<M,EWithoutNegator,STRIDE> SimTK::Vec< M, ELT, STRIDE >::TWithoutNegator

Type of this Vec with negator removed from its element type, if the element is negated.

◆ TReal

template<int M, class ELT, int STRIDE>
typedef Vec<M,EReal,STRIDE*CNT<E>::RealStrideFactor> SimTK::Vec< M, ELT, STRIDE >::TReal

Type of this Vec cast to show only the real part of its element; this might affect the stride.

◆ TImag

template<int M, class ELT, int STRIDE>
typedef Vec<M,EImag,STRIDE*CNT<E>::RealStrideFactor> SimTK::Vec< M, ELT, STRIDE >::TImag

Type of this Vec cast to show only the imaginary part of its element; this might affect the stride.

◆ TComplex

template<int M, class ELT, int STRIDE>
typedef Vec<M,EComplex,STRIDE> SimTK::Vec< M, ELT, STRIDE >::TComplex

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ THerm

template<int M, class ELT, int STRIDE>
typedef Row<M,EHerm,STRIDE> SimTK::Vec< M, ELT, STRIDE >::THerm

Type of this Vec after casting to its Hermitian transpose; that is, the Vec turns into a Row and each element turns into its Hermitian transpose.

◆ TPosTrans

template<int M, class ELT, int STRIDE>
typedef Row<M,E,STRIDE> SimTK::Vec< M, ELT, STRIDE >::TPosTrans

Type of this Vec after casting to its positional transpose; that is, the Vec turns into a Row but the element type remains unchanged.

◆ TElement

template<int M, class ELT, int STRIDE>
typedef E SimTK::Vec< M, ELT, STRIDE >::TElement

Element type of this Vec.

◆ TRow

template<int M, class ELT, int STRIDE>
typedef E SimTK::Vec< M, ELT, STRIDE >::TRow

Type of a row of this CNT object (for a Vec, just its element type).

◆ TCol

template<int M, class ELT, int STRIDE>
typedef Vec SimTK::Vec< M, ELT, STRIDE >::TCol

Type of a column of this CNT object (for a Vec, the whole thing).

◆ TSqrt

template<int M, class ELT, int STRIDE>
typedef Vec<M,ESqrt,1> SimTK::Vec< M, ELT, STRIDE >::TSqrt

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ TAbs

template<int M, class ELT, int STRIDE>
typedef Vec<M,EAbs,1> SimTK::Vec< M, ELT, STRIDE >::TAbs

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ TStandard

template<int M, class ELT, int STRIDE>
typedef Vec<M,EStandard,1> SimTK::Vec< M, ELT, STRIDE >::TStandard

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ TInvert

template<int M, class ELT, int STRIDE>
typedef Row<M,EInvert,1> SimTK::Vec< M, ELT, STRIDE >::TInvert

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ TNormalize

template<int M, class ELT, int STRIDE>
typedef Vec<M,ENormalize,1> SimTK::Vec< M, ELT, STRIDE >::TNormalize

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ TSqHermT

template<int M, class ELT, int STRIDE>
typedef ESqHermT SimTK::Vec< M, ELT, STRIDE >::TSqHermT

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ TSqTHerm

template<int M, class ELT, int STRIDE>
typedef SymMat<M,ESqTHerm> SimTK::Vec< M, ELT, STRIDE >::TSqTHerm

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ Scalar

template<int M, class ELT, int STRIDE>
typedef EScalar SimTK::Vec< M, ELT, STRIDE >::Scalar

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ ULessScalar

template<int M, class ELT, int STRIDE>
typedef EULessScalar SimTK::Vec< M, ELT, STRIDE >::ULessScalar

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ Number

template<int M, class ELT, int STRIDE>
typedef ENumber SimTK::Vec< M, ELT, STRIDE >::Number

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ StdNumber

template<int M, class ELT, int STRIDE>
typedef EStdNumber SimTK::Vec< M, ELT, STRIDE >::StdNumber

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ Precision

template<int M, class ELT, int STRIDE>
typedef EPrecision SimTK::Vec< M, ELT, STRIDE >::Precision

These compile-time constants are required of every Composite Numerical Type (CNT).

◆ ScalarNormSq

template<int M, class ELT, int STRIDE>
typedef EScalarNormSq SimTK::Vec< M, ELT, STRIDE >::ScalarNormSq

These compile-time constants are required of every Composite Numerical Type (CNT).

Member Enumeration Documentation

◆ anonymous enum

template<int M, class ELT, int STRIDE>
anonymous enum

These compile-time constants are required of every Composite Numerical Type (CNT).

Enumerator
NRows 
NCols 
NPackedElements 
NActualElements 
NActualScalars 
RowSpacing 
ColSpacing 
ImagOffset 
RealStrideFactor 
ArgDepth 
IsScalar 
IsULessScalar 
IsNumber 
IsStdNumber 
IsPrecision 
SignInterpretation 

Constructor & Destructor Documentation

◆ Vec() [1/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( )
inline

Default construction initializes Vec's elements to NaN when debugging but leaves them uninitialized garbage otherwise, so declarations have zero cost in Release builds.

◆ Vec() [2/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const Vec< M, ELT, STRIDE > &  src)
inline

Copy constructor copies the logically-included elements from the source Vec; gaps due to stride are not accessed in either source or destination.

◆ Vec() [3/17]

template<int M, class ELT, int STRIDE>
template<int SS>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const Vec< M, E, SS > &  src)
inline

This is an implicit conversion from a Vec of the same length and element type but with a different stride.

◆ Vec() [4/17]

template<int M, class ELT, int STRIDE>
template<int SS>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const Vec< M, ENeg, SS > &  src)
inline

This is an implicit conversion from a Vec of the same length and negated element type (possibly with a different stride).

◆ Vec() [5/17]

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const Vec< M, EE, SS > &  src)
inlineexplicit

Construct a Vec from a Vec of the same length, with any stride.

Works as long as the element types are assignment compatible.

◆ Vec() [6/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e)
inlineexplicit

Construction from a single value of this Vec's element type assigns that value to each element.

◆ Vec() [7/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const ENeg ne)
inlineexplicit

Construction from a single value of this Vec's negated element type assigns that value to each element, requiring floating point negation to be performed once to compute the type-E representation of the type negator<E> value provided.

◆ Vec() [8/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( int  i)
inlineexplicit

Given an int value, turn it into a suitable floating point number, convert that to element type E and then feed that to the above single-element constructor.

See also
Vec::Vec(const E&).

◆ Vec() [9/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1 
)
inline

Construct a Vec<2,E> from two elements of type E, etc.

◆ Vec() [10/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2 
)
inline

◆ Vec() [11/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2,
const E e3 
)
inline

◆ Vec() [12/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2,
const E e3,
const E e4 
)
inline

◆ Vec() [13/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2,
const E e3,
const E e4,
const E e5 
)
inline

◆ Vec() [14/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2,
const E e3,
const E e4,
const E e5,
const E e6 
)
inline

◆ Vec() [15/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2,
const E e3,
const E e4,
const E e5,
const E e6,
const E e7 
)
inline

◆ Vec() [16/17]

template<int M, class ELT, int STRIDE>
SimTK::Vec< M, ELT, STRIDE >::Vec ( const E e0,
const E e1,
const E e2,
const E e3,
const E e4,
const E e5,
const E e6,
const E e7,
const E e8 
)
inline

◆ Vec() [17/17]

template<int M, class ELT, int STRIDE>
template<class EE >
SimTK::Vec< M, ELT, STRIDE >::Vec ( const EE *  p)
inlineexplicit

Construction from a pointer to elements of any type EE assumes we're pointing at a C++ array of EE's of the right length, and that EE is assignment compatible with this Vec's element type E.

The supplied pointer cannot be null.

Member Function Documentation

◆ size()

template<int M, class ELT, int STRIDE>
static int SimTK::Vec< M, ELT, STRIDE >::size ( )
inlinestatic

The number of elements in this Vec (note that stride does not affect this number.)

◆ nrow()

template<int M, class ELT, int STRIDE>
static int SimTK::Vec< M, ELT, STRIDE >::nrow ( )
inlinestatic

The number of rows in a Vec is the number of elements.

◆ ncol()

template<int M, class ELT, int STRIDE>
static int SimTK::Vec< M, ELT, STRIDE >::ncol ( )
inlinestatic

The number of columns in a Vec is always 1.

◆ scalarNormSqr()

template<int M, class ELT, int STRIDE>
ScalarNormSq SimTK::Vec< M, ELT, STRIDE >::scalarNormSqr ( ) const
inline

Scalar norm square is sum( conjugate squares of all underlying scalars ), where conjugate square of scalar s is conj(s)*s.

◆ sqrt()

template<int M, class ELT, int STRIDE>
TSqrt SimTK::Vec< M, ELT, STRIDE >::sqrt ( ) const
inline

Elementwise square root; that is, the return value has the same length as this Vec but with each element replaced by whatever it thinks its square root is.

The element type may have changed and the stride of the return Vec is always 1.

◆ abs()

template<int M, class ELT, int STRIDE>
TAbs SimTK::Vec< M, ELT, STRIDE >::abs ( ) const
inline

Elementwise absolute value; that is, the return value has the same dimension as this Vec but with each element replaced by whatever it thinks its absolute value is.

The element type may have changed and the stride of the return Vec is always 1.

◆ standardize()

template<int M, class ELT, int STRIDE>
TStandard SimTK::Vec< M, ELT, STRIDE >::standardize ( ) const
inline

Return a copy of this Vec but with the underlying scalar type converted (if necessary) to one of the C++ standard real or complex floating point types.

This may require floating point negations to occur to get read of negator or conjugate types.

◆ sum()

template<int M, class ELT, int STRIDE>
EStandard SimTK::Vec< M, ELT, STRIDE >::sum ( ) const
inline

Sum just adds up all the elements into a single return element that is the same type as this Vec's elements except standardized to use one of the C++ built-in real or complex types as its underlying scalars.

◆ operator=() [1/4]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::operator= ( const Vec< M, ELT, STRIDE > &  src)
inline

Copy assignment operator copies the logically-included elements from the source Vec; gaps due to stride are not accessed in either source or destination.

OK if source and destination are the same vector; results are unpredictable if they otherwise overlap with elements in common.

◆ operator=() [2/4]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::operator= ( const EE *  p)
inline

Assignment to a pointer to elements of any type EE assumes we're pointing at a C++ array of EE's of the right length, and that EE is assignment compatible with this Vec's element type E.

The supplied pointer cannot be null.

◆ operator=() [3/4]

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec& SimTK::Vec< M, ELT, STRIDE >::operator= ( const Vec< M, EE, SS > &  vv)
inline

Assignment to a conforming Vec, of any element type and stride, provided that the element types are assignment-compatible.

◆ operator+=() [1/3]

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec& SimTK::Vec< M, ELT, STRIDE >::operator+= ( const Vec< M, EE, SS > &  r)
inline

Add in a conforming Vec, of any element type and stride, provided that the element types are addition-compatible.

◆ operator+=() [2/3]

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec& SimTK::Vec< M, ELT, STRIDE >::operator+= ( const Vec< M, negator< EE >, SS > &  r)
inline

Add in a conforming Vec, of any negated element type and stride, provided that the element types are addition-compatible.

The negation is removed at zero cost by subtracting rather than adding.

◆ operator-=() [1/3]

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec& SimTK::Vec< M, ELT, STRIDE >::operator-= ( const Vec< M, EE, SS > &  r)
inline

Subtract off a conforming Vec, of any element type and stride, provided that the element types are addition-compatible.

◆ operator-=() [2/3]

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec& SimTK::Vec< M, ELT, STRIDE >::operator-= ( const Vec< M, negator< EE >, SS > &  r)
inline

Subtract off a conforming Vec, of any negated element type and stride, provided that the element types are addition-compatible.

The negation is removed at zero cost by adding rather than subtracting.

◆ conformingAdd()

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec<M,typename CNT<E>::template Result<EE>::Add> SimTK::Vec< M, ELT, STRIDE >::conformingAdd ( const Vec< M, EE, SS > &  r) const
inline

Vector addition – use operator+ instead.

◆ conformingSubtract()

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec<M,typename CNT<E>::template Result<EE>::Sub> SimTK::Vec< M, ELT, STRIDE >::conformingSubtract ( const Vec< M, EE, SS > &  r) const
inline

Vector subtraction – use operator- instead.

◆ conformingMultiply()

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Mat<M,M,typename CNT<E>::template Result<EE>::Mul> SimTK::Vec< M, ELT, STRIDE >::conformingMultiply ( const Row< M, EE, SS > &  r) const
inline

Same as outer product (m = col*row) – use operator* or outer() instead.

◆ elementwiseMultiply()

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec<M,typename CNT<E>::template Result<EE>::Mul> SimTK::Vec< M, ELT, STRIDE >::elementwiseMultiply ( const Vec< M, EE, SS > &  r) const
inline

Elementwise multiply (Matlab " .* " operator).

◆ elementwiseDivide()

template<int M, class ELT, int STRIDE>
template<class EE , int SS>
Vec<M,typename CNT<E>::template Result<EE>::Dvd> SimTK::Vec< M, ELT, STRIDE >::elementwiseDivide ( const Vec< M, EE, SS > &  r) const
inline

Elementwise divide (Matlab " ./ " operator).

◆ operator[]() [1/2]

template<int M, class ELT, int STRIDE>
const E& SimTK::Vec< M, ELT, STRIDE >::operator[] ( int  i) const
inline

Select an element of this Vec and return a const reference to it.

This is range-checked in Debug builds but has zero overhead in Release builds.

◆ operator()() [1/2]

template<int M, class ELT, int STRIDE>
const E& SimTK::Vec< M, ELT, STRIDE >::operator() ( int  i) const
inline

Same as const operator[] above.

◆ operator[]() [2/2]

template<int M, class ELT, int STRIDE>
E& SimTK::Vec< M, ELT, STRIDE >::operator[] ( int  i)
inline

Select an element of this Vec and return a writable reference to it.

This is range-checked in Debug builds but has zero overhead in Release builds.

◆ operator()() [2/2]

template<int M, class ELT, int STRIDE>
E& SimTK::Vec< M, ELT, STRIDE >::operator() ( int  i)
inline

Same as non-const operator[] above.

◆ normSqr()

template<int M, class ELT, int STRIDE>
ScalarNormSq SimTK::Vec< M, ELT, STRIDE >::normSqr ( ) const
inline

◆ norm()

template<int M, class ELT, int STRIDE>
CNT<ScalarNormSq>::TSqrt SimTK::Vec< M, ELT, STRIDE >::norm ( ) const
inline

◆ normalize()

template<int M, class ELT, int STRIDE>
TNormalize SimTK::Vec< M, ELT, STRIDE >::normalize ( ) const
inline

If the elements of this Vec are scalars, the result is what you get by dividing each element by the norm() calculated above.

If the elements are not scalars, then the elements are separately normalized. That means you will get a different answer from Vec<2,Vec3>::normalize() than you would from a Vec<6>::normalize() containing the same scalars.

Normalize returns a vector of the same dimension but in new, packed storage and with a return type that does not include negator<> even if the original Vec<> does, because we can eliminate the negation here almost for free. But we can't standardize (change conjugate to complex) for free, so we'll retain conjugates if there are any.

◆ invert()

template<int M, class ELT, int STRIDE>
TInvert SimTK::Vec< M, ELT, STRIDE >::invert ( ) const
inline

This method is not supported for Vec objects.

◆ operator+()

template<int M, class ELT, int STRIDE>
const Vec& SimTK::Vec< M, ELT, STRIDE >::operator+ ( ) const
inline

Unary plus does nothing.

◆ operator-() [1/2]

template<int M, class ELT, int STRIDE>
const TNeg& SimTK::Vec< M, ELT, STRIDE >::operator- ( ) const
inline

Unary minus recasts this Vec to a type that has the opposite interpretation of the sign but is otherwise identical, so no computation or copying is performed here.

◆ operator-() [2/2]

template<int M, class ELT, int STRIDE>
TNeg& SimTK::Vec< M, ELT, STRIDE >::operator- ( )
inline

Recast to negated type and return a writable reference; writing to this will cause the negated result to be placed in the original Vec.

◆ operator~() [1/2]

template<int M, class ELT, int STRIDE>
const THerm& SimTK::Vec< M, ELT, STRIDE >::operator~ ( ) const
inline

The Hermitian transpose operator recasts this Vec to a type that specifies the opposite storage order (row vs. column) then returns a reference, so no computation or copying is performed here.

◆ operator~() [2/2]

template<int M, class ELT, int STRIDE>
THerm& SimTK::Vec< M, ELT, STRIDE >::operator~ ( )
inline

Recast to Hermitian transposed type and return a writable reference; the effect is that writing to elements of the result affects the transposed element of the original Vec.

◆ negate()

template<int M, class ELT, int STRIDE>
const TNeg& SimTK::Vec< M, ELT, STRIDE >::negate ( ) const
inline

Non-operator version of unary negation; just a recast.

◆ updNegate()

template<int M, class ELT, int STRIDE>
TNeg& SimTK::Vec< M, ELT, STRIDE >::updNegate ( )
inline

Non-operator version of unary negation; recasts and returns a writable reference.

◆ transpose()

template<int M, class ELT, int STRIDE>
const THerm& SimTK::Vec< M, ELT, STRIDE >::transpose ( ) const
inline

Non-operator version of Hermitian transpose; just a recast.

◆ updTranspose()

template<int M, class ELT, int STRIDE>
THerm& SimTK::Vec< M, ELT, STRIDE >::updTranspose ( )
inline

Non-operator version of Hermitian transpose; recasts and returns a writable reference.

◆ positionalTranspose()

template<int M, class ELT, int STRIDE>
const TPosTrans& SimTK::Vec< M, ELT, STRIDE >::positionalTranspose ( ) const
inline

Positional transpose turns this Vec into a Row but does not transpose the individual elements.

That is, a Vec<2,Vec3> becomes a Row<2,Vec3>, rather than a Row<2,Row3> as would happen with ordinary transpose(). This is just a recast; no copying or computation is performed here.

◆ updPositionalTranspose()

template<int M, class ELT, int STRIDE>
TPosTrans& SimTK::Vec< M, ELT, STRIDE >::updPositionalTranspose ( )
inline

Positional transpose returning a writable reference.

◆ real() [1/2]

template<int M, class ELT, int STRIDE>
const TReal& SimTK::Vec< M, ELT, STRIDE >::real ( ) const
inline

Return a reference to the real portion of this Vec if it has complex elements; otherwise the type doesn't change.

This is just a recast; no copying or computation is done here. The result may have a different stride than the original since the imaginary parts must be skipped.

◆ real() [2/2]

template<int M, class ELT, int STRIDE>
TReal& SimTK::Vec< M, ELT, STRIDE >::real ( )
inline

Recast to show only the real portion of this Vec and return a writable reference.

◆ imag() [1/2]

template<int M, class ELT, int STRIDE>
const TImag& SimTK::Vec< M, ELT, STRIDE >::imag ( ) const
inline

Return a reference to the imaginary portion of this Vec if it has complex elements; otherwise the type doesn't change.

This is just a recast; no copying or computation is done here. The result may have a different stride than the original since the real parts must be skipped.

◆ imag() [2/2]

template<int M, class ELT, int STRIDE>
TImag& SimTK::Vec< M, ELT, STRIDE >::imag ( )
inline

Recast to show only the imaginary portion of this Vec and return a writable reference.

◆ castAwayNegatorIfAny()

template<int M, class ELT, int STRIDE>
const TWithoutNegator& SimTK::Vec< M, ELT, STRIDE >::castAwayNegatorIfAny ( ) const
inline

Recast to remove negators from this Vec's type if present; this is handy for simplifying operations where we know the sign can be ignored such as squaring.

◆ updCastAwayNegatorIfAny()

template<int M, class ELT, int STRIDE>
TWithoutNegator& SimTK::Vec< M, ELT, STRIDE >::updCastAwayNegatorIfAny ( )
inline

Recast to remove negators from this Vec's type if present and return a writable reference.

◆ scalarMultiply()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<E>::template Result<EE>::Mul> SimTK::Vec< M, ELT, STRIDE >::scalarMultiply ( const EE &  e) const
inline

◆ scalarMultiplyFromLeft()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<EE>::template Result<E>::Mul> SimTK::Vec< M, ELT, STRIDE >::scalarMultiplyFromLeft ( const EE &  e) const
inline

◆ scalarDivide()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<E>::template Result<EE>::Dvd> SimTK::Vec< M, ELT, STRIDE >::scalarDivide ( const EE &  e) const
inline

◆ scalarDivideFromLeft()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<EE>::template Result<E>::Dvd> SimTK::Vec< M, ELT, STRIDE >::scalarDivideFromLeft ( const EE &  e) const
inline

◆ scalarAdd()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<E>::template Result<EE>::Add> SimTK::Vec< M, ELT, STRIDE >::scalarAdd ( const EE &  e) const
inline

◆ scalarSubtract()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<E>::template Result<EE>::Sub> SimTK::Vec< M, ELT, STRIDE >::scalarSubtract ( const EE &  e) const
inline

◆ scalarSubtractFromLeft()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M, typename CNT<EE>::template Result<E>::Sub> SimTK::Vec< M, ELT, STRIDE >::scalarSubtractFromLeft ( const EE &  e) const
inline

◆ operator=() [4/4]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::operator= ( const EE &  e)
inline

◆ operator+=() [3/3]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::operator+= ( const EE &  e)
inline

◆ operator-=() [3/3]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::operator-= ( const EE &  e)
inline

◆ operator*=()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::operator*= ( const EE &  e)
inline

◆ operator/=()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::operator/= ( const EE &  e)
inline

◆ scalarEq() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarEq ( const EE &  ee)
inline

◆ scalarPlusEq() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarPlusEq ( const EE &  ee)
inline

◆ scalarMinusEq() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarMinusEq ( const EE &  ee)
inline

◆ scalarMinusEqFromLeft() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarMinusEqFromLeft ( const EE &  ee)
inline

◆ scalarTimesEq() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarTimesEq ( const EE &  ee)
inline

◆ scalarTimesEqFromLeft() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarTimesEqFromLeft ( const EE &  ee)
inline

◆ scalarDivideEq() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarDivideEq ( const EE &  ee)
inline

◆ scalarDivideEqFromLeft() [1/2]

template<int M, class ELT, int STRIDE>
template<class EE >
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarDivideEqFromLeft ( const EE &  ee)
inline

◆ scalarEq() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarEq ( int  ee)
inline

◆ scalarPlusEq() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarPlusEq ( int  ee)
inline

◆ scalarMinusEq() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarMinusEq ( int  ee)
inline

◆ scalarTimesEq() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarTimesEq ( int  ee)
inline

◆ scalarDivideEq() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarDivideEq ( int  ee)
inline

◆ scalarMinusEqFromLeft() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarMinusEqFromLeft ( int  ee)
inline

◆ scalarTimesEqFromLeft() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarTimesEqFromLeft ( int  ee)
inline

◆ scalarDivideEqFromLeft() [2/2]

template<int M, class ELT, int STRIDE>
Vec& SimTK::Vec< M, ELT, STRIDE >::scalarDivideEqFromLeft ( int  ee)
inline

◆ setToNaN()

template<int M, class ELT, int STRIDE>
void SimTK::Vec< M, ELT, STRIDE >::setToNaN ( )
inline

Set every scalar in this Vec to NaN; this is the default initial value in Debug builds, but not in Release.

◆ setToZero()

template<int M, class ELT, int STRIDE>
void SimTK::Vec< M, ELT, STRIDE >::setToZero ( )
inline

Set every scalar in this Vec to zero.

◆ getSubVec() [1/2]

template<int M, class ELT, int STRIDE>
template<int MM>
const Vec<MM,ELT,STRIDE>& SimTK::Vec< M, ELT, STRIDE >::getSubVec ( int  i) const
inline

Extract a const reference to a sub-Vec with size known at compile time.

This must be called with an explicit template argument for the size, for example, getSubVec<3>(i). This is only a recast; no copying or computation is performed. The size and index are range checked in Debug builds but not in Release builds.

◆ updSubVec() [1/2]

template<int M, class ELT, int STRIDE>
template<int MM>
Vec<MM,ELT,STRIDE>& SimTK::Vec< M, ELT, STRIDE >::updSubVec ( int  i)
inline

Extract a writable reference to a sub-Vec with size known at compile time.

This must be called with an explicit template argument for the size, for example, updSubVec<3>(i). This is only a recast; no copying or computation is performed. The size and index are range checked in Debug builds but not in Release builds.

◆ getSubVec() [2/2]

template<int M, class ELT, int STRIDE>
template<int MM>
static const Vec& SimTK::Vec< M, ELT, STRIDE >::getSubVec ( const Vec< MM, ELT, STRIDE > &  v,
int  i 
)
inlinestatic

Extract a subvector of type Vec from a longer one that has the same element type and stride, and return a const reference to the selected subsequence.

◆ updSubVec() [2/2]

template<int M, class ELT, int STRIDE>
template<int MM>
static Vec& SimTK::Vec< M, ELT, STRIDE >::updSubVec ( Vec< MM, ELT, STRIDE > &  v,
int  i 
)
inlinestatic

Extract a subvector of type Vec from a longer one that has the same element type and stride, and return a writable reference to the selected subsequence.

◆ drop1()

template<int M, class ELT, int STRIDE>
Vec<M-1,ELT,1> SimTK::Vec< M, ELT, STRIDE >::drop1 ( int  p) const
inline

Return a vector one smaller than this one by dropping the element at the indicated position p.

The result is a packed copy with the same element type as this one.

◆ append1()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M+1,ELT,1> SimTK::Vec< M, ELT, STRIDE >::append1 ( const EE &  v) const
inline

Return a vector one larger than this one by adding an element to the end.

The result is a packed copy with the same element type as this one. Works for any assignment compatible element.

◆ insert1()

template<int M, class ELT, int STRIDE>
template<class EE >
Vec<M+1,ELT,1> SimTK::Vec< M, ELT, STRIDE >::insert1 ( int  p,
const EE &  v 
) const
inline

Return a vector one larger than this one by inserting an element before the indicated one.

The result is a packed copy with the same element type as this one. Works for any assignment compatible element. The index can be one greater than normally allowed in which case the element is appended (but use append1() if you know you're appending).

◆ getAs()

template<int M, class ELT, int STRIDE>
static const Vec& SimTK::Vec< M, ELT, STRIDE >::getAs ( const ELT *  p)
inlinestatic

Recast an ordinary C++ array E[] to a const Vec<M,E,S>; assumes compatible length, stride, and packing.

◆ updAs()

template<int M, class ELT, int STRIDE>
static Vec& SimTK::Vec< M, ELT, STRIDE >::updAs ( ELT *  p)
inlinestatic

Recast a writable ordinary C++ array E[] to a writable Vec<M,E,S>; assumes compatible length, stride, and packing.

◆ getNaN()

template<int M, class ELT, int STRIDE>
static Vec<M,ELT,1> SimTK::Vec< M, ELT, STRIDE >::getNaN ( )
inlinestatic

Return a Vec of the same length and element type as this one but with all elements set to NaN.

The result is packed (stride==1) regardless of the stride of this Vec.

◆ isNaN()

template<int M, class ELT, int STRIDE>
bool SimTK::Vec< M, ELT, STRIDE >::isNaN ( ) const
inline

Return true if any element of this Vec contains a NaN anywhere.

◆ isInf()

template<int M, class ELT, int STRIDE>
bool SimTK::Vec< M, ELT, STRIDE >::isInf ( ) const
inline

Return true if any element of this Vec contains a +Infinity or -Infinity somewhere but no element contains a NaN anywhere.

◆ isFinite()

template<int M, class ELT, int STRIDE>
bool SimTK::Vec< M, ELT, STRIDE >::isFinite ( ) const
inline

Return true if no element of this Vec contains an Infinity or a NaN anywhere.

◆ getDefaultTolerance()

template<int M, class ELT, int STRIDE>
static double SimTK::Vec< M, ELT, STRIDE >::getDefaultTolerance ( )
inlinestatic

For approximate comparisons, the default tolerance to use for a vector is the same as its elements' default tolerance.

◆ isNumericallyEqual() [1/3]

template<int M, class ELT, int STRIDE>
template<class E2 , int RS2>
bool SimTK::Vec< M, ELT, STRIDE >::isNumericallyEqual ( const Vec< M, E2, RS2 > &  v,
double  tol 
) const
inline

Test whether this vector is numerically equal to some other vector with the same shape, using a specified tolerance.

◆ isNumericallyEqual() [2/3]

template<int M, class ELT, int STRIDE>
template<class E2 , int RS2>
bool SimTK::Vec< M, ELT, STRIDE >::isNumericallyEqual ( const Vec< M, E2, RS2 > &  v) const
inline

Test whether this vector is numerically equal to some other vector with the same shape, using a default tolerance which is the looser of the default tolerances of the two objects being compared.

◆ isNumericallyEqual() [3/3]

template<int M, class ELT, int STRIDE>
bool SimTK::Vec< M, ELT, STRIDE >::isNumericallyEqual ( const ELT &  e,
double  tol = getDefaultTolerance() 
) const
inline

Test whether every element of this vector is numerically equal to the given element, using either a specified tolerance or the vector's default tolerance (which is always the same or looser than the default tolerance for one of its elements).

◆ toString()

template<int M, class ELT, int STRIDE>
std::string SimTK::Vec< M, ELT, STRIDE >::toString ( ) const
inline

Print Vec into a string and return it.

Please refer to operator<< for details.

◆ set()

template<int M, class ELT, int STRIDE>
void SimTK::Vec< M, ELT, STRIDE >::set ( int  i,
const E value 
)
inline

Variant of operator[] that's scripting friendly to set ith entry.

◆ get()

template<int M, class ELT, int STRIDE>
const E& SimTK::Vec< M, ELT, STRIDE >::get ( int  i) const
inline

Variant of operator[] that's scripting friendly to get const reference to ith entry.


The documentation for this class was generated from the following files: