Transform from frame B to frame F, but with the internal representation inverted.
More...
|
| | InverseTransform_ () |
| | Default constructor produces an identity transform. More...
|
| |
| | operator Transform_< P > () const |
| | Implicit conversion from InverseTransform_ to Transform_. More...
|
| |
| InverseTransform_ & | operator= (const Transform_< P > &X) |
| |
| const Transform_< P > & | invert () const |
| |
| Transform_< P > & | updInvert () |
| |
| const Transform_< P > & | operator~ () const |
| |
| Transform_< P > & | operator~ () |
| |
| Transform_< P > | compose (const Transform_< P > &X_FY) const |
| |
| Transform_< P > | compose (const InverseTransform_< P > &X_FY) const |
| |
| Vec< 3, P > | xformFrameVecToBase (const Vec< 3, P > &vF) const |
| |
| Vec< 3, P > | xformBaseVecToFrame (const Vec< 3, P > &vB) const |
| |
| Vec< 3, P > | shiftFrameStationToBase (const Vec< 3, P > &sF) const |
| |
| Vec< 3, P > | shiftBaseStationToFrame (const Vec< 3, P > &sB) const |
| |
| const InverseRotation_< P > & | R () const |
| |
| InverseRotation_< P > & | updR () |
| |
| const InverseRotation_< P >::ColType & | x () const |
| |
| const InverseRotation_< P >::ColType & | y () const |
| |
| const InverseRotation_< P >::ColType & | z () const |
| |
| const Rotation_< P > & | RInv () const |
| |
| Rotation_< P > & | updRInv () |
| |
| Vec< 3, P > | p () const |
| | Calculate the actual translation vector at a cost of 18 flops. More...
|
| |
| void | setP (const Vec< 3, P > &p_BF) |
| |
| const Vec< 3, P > & | pInv () const |
| |
| void | setPInv (const Vec< 3, P > &p) |
| |
| Mat< 3, 4, P > | toMat34 () const |
| | For compatibility with Transform_. More...
|
| |
| Mat< 4, 4, P > | toMat44 () const |
| | Return the equivalent 4x4 transformation matrix. More...
|
| |
| Vec< 3, P > | T () const |
| |
template<class P>
class SimTK::InverseTransform_< P >
Transform from frame B to frame F, but with the internal representation inverted.
That is, we store R*,p* here but the transform this represents is
B F [ | ]
X_BF = X = [ R | p ] where R=~(R*), p = - ~(R*)(p*).
[.......|...]
[ 0 0 0 1 ]