Simbody  3.6
MatrixBase.h
Go to the documentation of this file.
1 #ifndef SimTK_SIMMATRIX_MATRIXBASE_H_
2 #define SimTK_SIMMATRIX_MATRIXBASE_H_
3 
4 /* -------------------------------------------------------------------------- *
5  * Simbody(tm): SimTKcommon *
6  * -------------------------------------------------------------------------- *
7  * This is part of the SimTK biosimulation toolkit originating from *
8  * Simbios, the NIH National Center for Physics-Based Simulation of *
9  * Biological Structures at Stanford, funded under the NIH Roadmap for *
10  * Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
11  * *
12  * Portions copyright (c) 2005-13 Stanford University and the Authors. *
13  * Authors: Michael Sherman *
14  * Contributors: *
15  * *
16  * Licensed under the Apache License, Version 2.0 (the "License"); you may *
17  * not use this file except in compliance with the License. You may obtain a *
18  * copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
19  * *
20  * Unless required by applicable law or agreed to in writing, software *
21  * distributed under the License is distributed on an "AS IS" BASIS, *
22  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
23  * See the License for the specific language governing permissions and *
24  * limitations under the License. *
25  * -------------------------------------------------------------------------- */
26 
31 namespace SimTK {
32 
33 //==============================================================================
34 // MATRIX BASE
35 //==============================================================================
67 // ----------------------------------------------------------------------------
68 template <class ELT> class MatrixBase {
69 public:
70  // These typedefs are handy, but despite appearances you cannot
71  // treat a MatrixBase as a composite numerical type. That is,
72  // CNT<MatrixBase> will not compile, or if it does it won't be
73  // meaningful.
74 
75  typedef ELT E;
76  typedef typename CNT<E>::TNeg ENeg;
78  typedef typename CNT<E>::TReal EReal;
79  typedef typename CNT<E>::TImag EImag;
80  typedef typename CNT<E>::TComplex EComplex;
81  typedef typename CNT<E>::THerm EHerm;
82  typedef typename CNT<E>::TPosTrans EPosTrans;
83 
84  typedef typename CNT<E>::TAbs EAbs;
85  typedef typename CNT<E>::TStandard EStandard;
86  typedef typename CNT<E>::TInvert EInvert;
87  typedef typename CNT<E>::TNormalize ENormalize;
88  typedef typename CNT<E>::TSqHermT ESqHermT;
89  typedef typename CNT<E>::TSqTHerm ESqTHerm;
90 
91  typedef typename CNT<E>::Scalar EScalar;
92  typedef typename CNT<E>::Number ENumber;
93  typedef typename CNT<E>::StdNumber EStdNumber;
94  typedef typename CNT<E>::Precision EPrecision;
96 
97  typedef EScalar Scalar; // the underlying Scalar type
98  typedef ENumber Number; // negator removed from Scalar
99  typedef EStdNumber StdNumber; // conjugate goes to complex
100  typedef EPrecision Precision; // complex removed from StdNumber
101  typedef EScalarNormSq ScalarNormSq; // type of scalar^2
102 
110 
115  typedef MatrixBase<ESqHermT> TSqHermT; // ~Mat*Mat
116  typedef MatrixBase<ESqTHerm> TSqTHerm; // Mat*~Mat
117 
119  const MatrixCharacter& getMatrixCharacter() const {return helper.getMatrixCharacter();}
120 
123  void commitTo(const MatrixCommitment& mc)
124  { helper.commitTo(mc); }
125 
126  // This gives the resulting matrix type when (m(i,j) op P) is applied to each element.
127  // It will have element types which are the regular composite result of E op P.
128  template <class P> struct EltResult {
129  typedef MatrixBase<typename CNT<E>::template Result<P>::Mul> Mul;
130  typedef MatrixBase<typename CNT<E>::template Result<P>::Dvd> Dvd;
131  typedef MatrixBase<typename CNT<E>::template Result<P>::Add> Add;
132  typedef MatrixBase<typename CNT<E>::template Result<P>::Sub> Sub;
133  };
134 
136  int nrow() const {return helper.nrow();}
138  int ncol() const {return helper.ncol();}
139 
147  ptrdiff_t nelt() const {return helper.nelt();}
148 
151 
152  enum {
154  CppNScalarsPerElement = sizeof(E) / sizeof(Scalar)
155  };
156 
161 
164  MatrixBase(int m, int n)
166 
172  explicit MatrixBase(const MatrixCommitment& commitment)
173  : helper(NScalarsPerElement,CppNScalarsPerElement,commitment) {}
174 
175 
180  MatrixBase(const MatrixCommitment& commitment, int m, int n)
181  : helper(NScalarsPerElement,CppNScalarsPerElement,commitment,m,n) {}
182 
185  : helper(b.helper.getCharacterCommitment(),
186  b.helper, typename MatrixHelper<Scalar>::DeepCopy()) { }
187 
190  MatrixBase(const TNeg& b)
191  : helper(b.helper.getCharacterCommitment(),
192  b.helper, typename MatrixHelper<Scalar>::DeepCopy()) { }
193 
197  helper.copyAssign(b.helper);
198  return *this;
199  }
200  MatrixBase& operator=(const MatrixBase& b) { return copyAssign(b); }
201 
202 
212  helper.writableViewAssign(const_cast<MatrixHelper<Scalar>&>(src.helper));
213  return *this;
214  }
215 
216  // default destructor
217 
224  MatrixBase(const MatrixCommitment& commitment, int m, int n, const ELT& initialValue)
225  : helper(NScalarsPerElement, CppNScalarsPerElement, commitment, m, n)
226  { helper.fillWith(reinterpret_cast<const Scalar*>(&initialValue)); }
227 
238  MatrixBase(const MatrixCommitment& commitment, int m, int n,
239  const ELT* cppInitialValuesByRow)
240  : helper(NScalarsPerElement, CppNScalarsPerElement, commitment, m, n)
241  { helper.copyInByRowsFromCpp(reinterpret_cast<const Scalar*>(cppInitialValuesByRow)); }
242 
254 
256  MatrixBase(const MatrixCommitment& commitment,
257  const MatrixCharacter& character,
258  int spacing, const Scalar* data) // read only data
260  commitment, character, spacing, data) {}
261 
263  MatrixBase(const MatrixCommitment& commitment,
264  const MatrixCharacter& character,
265  int spacing, Scalar* data) // writable data
267  commitment, character, spacing, data) {}
269 
270  // Create a new MatrixBase from an existing helper. Both shallow and deep copies are possible.
271  MatrixBase(const MatrixCommitment& commitment,
272  MatrixHelper<Scalar>& source,
273  const typename MatrixHelper<Scalar>::ShallowCopy& shallow)
274  : helper(commitment, source, shallow) {}
275  MatrixBase(const MatrixCommitment& commitment,
276  const MatrixHelper<Scalar>& source,
277  const typename MatrixHelper<Scalar>::ShallowCopy& shallow)
278  : helper(commitment, source, shallow) {}
279  MatrixBase(const MatrixCommitment& commitment,
280  const MatrixHelper<Scalar>& source,
281  const typename MatrixHelper<Scalar>::DeepCopy& deep)
282  : helper(commitment, source, deep) {}
283 
287  void clear() {helper.clear();}
288 
289  MatrixBase& operator*=(const StdNumber& t) { helper.scaleBy(t); return *this; }
290  MatrixBase& operator/=(const StdNumber& t) { helper.scaleBy(StdNumber(1)/t); return *this; }
291  MatrixBase& operator+=(const MatrixBase& r) { helper.addIn(r.helper); return *this; }
292  MatrixBase& operator-=(const MatrixBase& r) { helper.subIn(r.helper); return *this; }
293 
294  template <class EE> MatrixBase(const MatrixBase<EE>& b)
295  : helper(MatrixCommitment(),b.helper, typename MatrixHelper<Scalar>::DeepCopy()) { }
296 
297  template <class EE> MatrixBase& operator=(const MatrixBase<EE>& b)
298  { helper = b.helper; return *this; }
299  template <class EE> MatrixBase& operator+=(const MatrixBase<EE>& b)
300  { helper.addIn(b.helper); return *this; }
301  template <class EE> MatrixBase& operator-=(const MatrixBase<EE>& b)
302  { helper.subIn(b.helper); return *this; }
303 
314  MatrixBase& operator=(const ELT& t) {
315  setToZero(); updDiag().setTo(t);
316  return *this;
317  }
318 
324  template <class S> inline MatrixBase&
325  scalarAssign(const S& s) {
326  setToZero(); updDiag().setTo(s);
327  return *this;
328  }
329 
333  template <class S> inline MatrixBase&
334  scalarAddInPlace(const S& s) {
335  updDiag().elementwiseAddScalarInPlace(s);
336  }
337 
338 
342  template <class S> inline MatrixBase&
343  scalarSubtractInPlace(const S& s) {
344  updDiag().elementwiseSubtractScalarInPlace(s);
345  }
346 
349  template <class S> inline MatrixBase&
351  negateInPlace();
352  updDiag().elementwiseAddScalarInPlace(s); // yes, add
353  }
354 
361  template <class S> inline MatrixBase&
362  scalarMultiplyInPlace(const S&);
363 
367  template <class S> inline MatrixBase&
369 
376  template <class S> inline MatrixBase&
377  scalarDivideInPlace(const S&);
378 
382  template <class S> inline MatrixBase&
383  scalarDivideFromLeftInPlace(const S&);
384 
385 
388  template <class EE> inline MatrixBase&
390 
393  template <class EE> inline void
394  rowScale(const VectorBase<EE>& r, typename EltResult<EE>::Mul& out) const;
395 
396  template <class EE> inline typename EltResult<EE>::Mul
397  rowScale(const VectorBase<EE>& r) const {
398  typename EltResult<EE>::Mul out(nrow(), ncol()); rowScale(r,out); return out;
399  }
400 
403  template <class EE> inline MatrixBase&
405 
406  template <class EE> inline void
407  colScale(const VectorBase<EE>& c, typename EltResult<EE>::Mul& out) const;
408 
409  template <class EE> inline typename EltResult<EE>::Mul
410  colScale(const VectorBase<EE>& c) const {
411  typename EltResult<EE>::Mul out(nrow(), ncol()); colScale(c,out); return out;
412  }
413 
414 
419  template <class ER, class EC> inline MatrixBase&
421 
422  template <class ER, class EC> inline void
423  rowAndColScale(const VectorBase<ER>& r, const VectorBase<EC>& c,
424  typename EltResult<typename VectorBase<ER>::template EltResult<EC>::Mul>::Mul& out) const;
425 
426  template <class ER, class EC> inline typename EltResult<typename VectorBase<ER>::template EltResult<EC>::Mul>::Mul
427  rowAndColScale(const VectorBase<ER>& r, const VectorBase<EC>& c) const {
428  typename EltResult<typename VectorBase<ER>::template EltResult<EC>::Mul>::Mul
429  out(nrow(), ncol());
430  rowAndColScale(r,c,out); return out;
431  }
432 
440  template <class S> inline MatrixBase&
441  elementwiseAssign(const S& s);
442 
445  { return elementwiseAssign<Real>(Real(s)); }
446 
449 
450  void elementwiseInvert(MatrixBase<typename CNT<E>::TInvert>& out) const;
451 
454  elementwiseInvert(out);
455  return out;
456  }
457 
465  template <class S> inline MatrixBase&
466  elementwiseAddScalarInPlace(const S& s);
467 
468  template <class S> inline void
469  elementwiseAddScalar(const S& s, typename EltResult<S>::Add&) const;
470 
471  template <class S> inline typename EltResult<S>::Add
472  elementwiseAddScalar(const S& s) const {
473  typename EltResult<S>::Add out(nrow(), ncol());
474  elementwiseAddScalar(s,out);
475  return out;
476  }
477 
485  template <class S> inline MatrixBase&
487 
488  template <class S> inline void
489  elementwiseSubtractScalar(const S& s, typename EltResult<S>::Sub&) const;
490 
491  template <class S> inline typename EltResult<S>::Sub
492  elementwiseSubtractScalar(const S& s) const {
493  typename EltResult<S>::Sub out(nrow(), ncol());
495  return out;
496  }
497 
506  template <class S> inline MatrixBase&
508 
509  template <class S> inline void
511  const S&,
513 
514  template <class S> inline typename MatrixBase<S>::template EltResult<E>::Sub
515  elementwiseSubtractFromScalar(const S& s) const {
516  typename MatrixBase<S>::template EltResult<E>::Sub out(nrow(), ncol());
517  elementwiseSubtractFromScalar<S>(s,out);
518  return out;
519  }
520 
522  template <class EE> inline MatrixBase&
524 
525  template <class EE> inline void
526  elementwiseMultiply(const MatrixBase<EE>&, typename EltResult<EE>::Mul&) const;
527 
528  template <class EE> inline typename EltResult<EE>::Mul
530  typename EltResult<EE>::Mul out(nrow(), ncol());
531  elementwiseMultiply<EE>(m,out);
532  return out;
533  }
534 
536  template <class EE> inline MatrixBase&
538 
539  template <class EE> inline void
541  const MatrixBase<EE>&,
543 
544  template <class EE> inline typename MatrixBase<EE>::template EltResult<E>::Mul
546  typename EltResult<EE>::Mul out(nrow(), ncol());
547  elementwiseMultiplyFromLeft<EE>(m,out);
548  return out;
549  }
550 
552  template <class EE> inline MatrixBase&
554 
555  template <class EE> inline void
556  elementwiseDivide(const MatrixBase<EE>&, typename EltResult<EE>::Dvd&) const;
557 
558  template <class EE> inline typename EltResult<EE>::Dvd
560  typename EltResult<EE>::Dvd out(nrow(), ncol());
561  elementwiseDivide<EE>(m,out);
562  return out;
563  }
564 
566  template <class EE> inline MatrixBase&
568 
569  template <class EE> inline void
571  const MatrixBase<EE>&,
573 
574  template <class EE> inline typename MatrixBase<EE>::template EltResult<EE>::Dvd
576  typename MatrixBase<EE>::template EltResult<E>::Dvd out(nrow(), ncol());
577  elementwiseDivideFromLeft<EE>(m,out);
578  return out;
579  }
580 
582  MatrixBase& setTo(const ELT& t) {helper.fillWith(reinterpret_cast<const Scalar*>(&t)); return *this;}
583  MatrixBase& setToNaN() {helper.fillWithScalar(CNT<StdNumber>::getNaN()); return *this;}
584  MatrixBase& setToZero() {helper.fillWithScalar(StdNumber(0)); return *this;}
585 
586  // View creating operators.
587  inline RowVectorView_<ELT> row(int i) const; // select a row
588  inline RowVectorView_<ELT> updRow(int i);
589  inline VectorView_<ELT> col(int j) const; // select a column
590  inline VectorView_<ELT> updCol(int j);
591 
592  RowVectorView_<ELT> operator[](int i) const {return row(i);}
594  VectorView_<ELT> operator()(int j) const {return col(j);}
595  VectorView_<ELT> operator()(int j) {return updCol(j);}
596 
597  // Select a block.
598  inline MatrixView_<ELT> block(int i, int j, int m, int n) const;
599  inline MatrixView_<ELT> updBlock(int i, int j, int m, int n);
600 
601  MatrixView_<ELT> operator()(int i, int j, int m, int n) const
602  { return block(i,j,m,n); }
603  MatrixView_<ELT> operator()(int i, int j, int m, int n)
604  { return updBlock(i,j,m,n); }
605 
606  // Hermitian transpose.
607  inline MatrixView_<EHerm> transpose() const;
609 
612 
615  inline VectorView_<ELT> diag() const;
618  inline VectorView_<ELT> updDiag();
622 
623  // Create a view of the real or imaginary elements. TODO
624  //inline MatrixView_<EReal> real() const;
625  //inline MatrixView_<EReal> updReal();
626  //inline MatrixView_<EImag> imag() const;
627  //inline MatrixView_<EImag> updImag();
628 
629  // Overload "real" and "imag" for both read and write as a nod to convention. TODO
630  //MatrixView_<EReal> real() {return updReal();}
631  //MatrixView_<EReal> imag() {return updImag();}
632 
633  // TODO: this routine seems ill-advised but I need it for the IVM port at the moment
634  TInvert invert() const { // return a newly-allocated inverse; dump negator
635  TInvert m(*this);
636  m.helper.invertInPlace();
637  return m; // TODO - bad: makes an extra copy
638  }
639 
640  void invertInPlace() {helper.invertInPlace();}
641 
643  void dump(const char* msg=0) const {
644  helper.dump(msg);
645  }
646 
655  const ELT& getElt(int i, int j) const { return *reinterpret_cast<const ELT*>(helper.getElt(i,j)); }
656  ELT& updElt(int i, int j) { return *reinterpret_cast< ELT*>(helper.updElt(i,j)); }
657 
658  const ELT& operator()(int i, int j) const {return getElt(i,j);}
659  ELT& operator()(int i, int j) {return updElt(i,j);}
660 
665  void getAnyElt(int i, int j, ELT& value) const
666  { helper.getAnyElt(i,j,reinterpret_cast<Scalar*>(&value)); }
667  ELT getAnyElt(int i, int j) const {ELT e; getAnyElt(i,j,e); return e;}
668 
671  // TODO: very slow! Should be optimized at least for the case
672  // where ELT is a Scalar.
673  ScalarNormSq scalarNormSqr() const {
674  const int nr=nrow(), nc=ncol();
675  ScalarNormSq sum(0);
676  for(int j=0;j<nc;++j)
677  for (int i=0; i<nr; ++i)
678  sum += CNT<E>::scalarNormSqr((*this)(i,j));
679  return sum;
680  }
681 
685  // TODO: very slow! Should be optimized at least for the case
686  // where ELT is a Scalar.
687  void abs(TAbs& mabs) const {
688  const int nr=nrow(), nc=ncol();
689  mabs.resize(nr,nc);
690  for(int j=0;j<nc;++j)
691  for (int i=0; i<nr; ++i)
692  mabs(i,j) = CNT<E>::abs((*this)(i,j));
693  }
694 
698  TAbs abs() const { TAbs mabs; abs(mabs); return mabs; }
699 
710  TStandard standardize() const {
711  const int nr=nrow(), nc=ncol();
712  TStandard mstd(nr, nc);
713  for(int j=0;j<nc;++j)
714  for (int i=0; i<nr; ++i)
715  mstd(i,j) = CNT<E>::standardize((*this)(i,j));
716  return mstd;
717  }
718 
722  ScalarNormSq normSqr() const { return scalarNormSqr(); }
723  // TODO -- not good; unnecessary overflow
724  typename CNT<ScalarNormSq>::TSqrt
726 
730  typename CNT<ScalarNormSq>::TSqrt
731  normRMS() const {
732  if (!CNT<ELT>::IsScalar)
733  SimTK_THROW1(Exception::Cant, "normRMS() only defined for scalar elements");
734  if (nelt() == 0)
735  return typename CNT<ScalarNormSq>::TSqrt(0);
737  }
738 
741  const int cols = ncol();
742  RowVector_<ELT> row(cols);
743  for (int j = 0; j < cols; ++j)
744  helper.colSum(j, reinterpret_cast<Scalar*>(&row[j]));
745  return row;
746  }
748  RowVector_<ELT> sum() const {return colSum();}
749 
752  const int rows = nrow();
753  Vector_<ELT> col(rows);
754  for (int i = 0; i < rows; ++i)
755  helper.rowSum(i, reinterpret_cast<Scalar*>(&col[i]));
756  return col;
757  }
758 
759  //TODO: make unary +/- return a self-view so they won't reallocate?
760  const MatrixBase& operator+() const {return *this; }
761  const TNeg& negate() const {return *reinterpret_cast<const TNeg*>(this); }
762  TNeg& updNegate() {return *reinterpret_cast<TNeg*>(this); }
763 
764  const TNeg& operator-() const {return negate();}
765  TNeg& operator-() {return updNegate();}
766 
767  MatrixBase& negateInPlace() {(*this) *= EPrecision(-1); return *this;}
768 
773  MatrixBase& resize(int m, int n) { helper.resize(m,n); return *this; }
779  MatrixBase& resizeKeep(int m, int n) { helper.resizeKeep(m,n); return *this; }
780 
781  // This prevents shape changes in a Matrix that would otherwise allow it. No harm if is
782  // are called on a Matrix that is locked already; it always succeeds.
783  void lockShape() {helper.lockShape();}
784 
785  // This allows shape changes again for a Matrix which was constructed to allow them
786  // but had them locked with the above routine. No harm if this is called on a Matrix
787  // that is already unlocked, but it is not allowed to call this on a Matrix which
788  // *never* allowed resizing. An exception will be thrown in that case.
789  void unlockShape() {helper.unlockShape();}
790 
791  // An assortment of handy conversions
792  const MatrixView_<ELT>& getAsMatrixView() const { return *reinterpret_cast<const MatrixView_<ELT>*>(this); }
793  MatrixView_<ELT>& updAsMatrixView() { return *reinterpret_cast< MatrixView_<ELT>*>(this); }
794  const Matrix_<ELT>& getAsMatrix() const { return *reinterpret_cast<const Matrix_<ELT>*>(this); }
795  Matrix_<ELT>& updAsMatrix() { return *reinterpret_cast< Matrix_<ELT>*>(this); }
796 
798  { assert(ncol()==1); return *reinterpret_cast<const VectorView_<ELT>*>(this); }
800  { assert(ncol()==1); return *reinterpret_cast< VectorView_<ELT>*>(this); }
801  const Vector_<ELT>& getAsVector() const
802  { assert(ncol()==1); return *reinterpret_cast<const Vector_<ELT>*>(this); }
804  { assert(ncol()==1); return *reinterpret_cast< Vector_<ELT>*>(this); }
806  { assert(ncol()==1); return *reinterpret_cast<const VectorBase<ELT>*>(this); }
808  { assert(ncol()==1); return *reinterpret_cast< VectorBase<ELT>*>(this); }
809 
811  { assert(nrow()==1); return *reinterpret_cast<const RowVectorView_<ELT>*>(this); }
813  { assert(nrow()==1); return *reinterpret_cast< RowVectorView_<ELT>*>(this); }
815  { assert(nrow()==1); return *reinterpret_cast<const RowVector_<ELT>*>(this); }
817  { assert(nrow()==1); return *reinterpret_cast< RowVector_<ELT>*>(this); }
819  { assert(nrow()==1); return *reinterpret_cast<const RowVectorBase<ELT>*>(this); }
821  { assert(nrow()==1); return *reinterpret_cast< RowVectorBase<ELT>*>(this); }
822 
823  // Access to raw data. We have to return the raw data
824  // pointer as pointer-to-scalar because we may pack the elements tighter
825  // than a C++ array would.
826 
831 
835  int getPackedSizeofElement() const {return NScalarsPerElement*sizeof(Scalar);}
836 
837  bool hasContiguousData() const {return helper.hasContiguousData();}
838  ptrdiff_t getContiguousScalarDataLength() const {
839  return helper.getContiguousDataLength();
840  }
841  const Scalar* getContiguousScalarData() const {
842  return helper.getContiguousData();
843  }
845  return helper.updContiguousData();
846  }
847  void replaceContiguousScalarData(Scalar* newData, ptrdiff_t length, bool takeOwnership) {
848  helper.replaceContiguousData(newData,length,takeOwnership);
849  }
850  void replaceContiguousScalarData(const Scalar* newData, ptrdiff_t length) {
851  helper.replaceContiguousData(newData,length);
852  }
853  void swapOwnedContiguousScalarData(Scalar* newData, ptrdiff_t length, Scalar*& oldData) {
854  helper.swapOwnedContiguousData(newData,length,oldData);
855  }
856 
861  explicit MatrixBase(MatrixHelperRep<Scalar>* hrep) : helper(hrep) {}
862 
863 protected:
864  const MatrixHelper<Scalar>& getHelper() const {return helper;}
865  MatrixHelper<Scalar>& updHelper() {return helper;}
866 
867 private:
868  MatrixHelper<Scalar> helper; // this is just one pointer
869 
870  template <class EE> friend class MatrixBase;
871 
872  // ============================= Unimplemented =============================
873  // This routine is useful for implementing friendlier Matrix expressions and operators.
874  // It maps closely to the Level-3 BLAS family of pxxmm() routines like sgemm(). The
875  // operation performed assumes that "this" is the result, and that "this" has
876  // already been sized correctly to receive the result. We'll compute
877  // this = beta*this + alpha*A*B
878  // If beta is 0 then "this" can be uninitialized. If alpha is 0 we promise not
879  // to look at A or B. The routine can work efficiently even if A and/or B are transposed
880  // by their views, so an expression like
881  // C += s * ~A * ~B
882  // can be performed with the single equivalent call
883  // C.matmul(1., s, Tr(A), Tr(B))
884  // where Tr(A) indicates a transposed view of the original A.
885  // The ultimate efficiency of this call depends on the data layout and views which
886  // are used for the three matrices.
887  // NOTE: neither A nor B can be the same matrix as 'this', nor views of the same data
888  // which would expose elements of 'this' that will be modified by this operation.
889  template <class ELT_A, class ELT_B>
890  MatrixBase& matmul(const StdNumber& beta, // applied to 'this'
891  const StdNumber& alpha, const MatrixBase<ELT_A>& A, const MatrixBase<ELT_B>& B)
892  {
893  helper.matmul(beta,alpha,A.helper,B.helper);
894  return *this;
895  }
896 
897 };
898 
899 } //namespace SimTK
900 
901 #endif // SimTK_SIMMATRIX_MATRIXBASE_H_
EltResult< EE >::Mul elementwiseMultiply(const MatrixBase< EE > &m) const
Definition: MatrixBase.h:529
Here we define class MatrixHelper<S>, the scalar-type templatized helper class for the more general...
Definition: MatrixHelper.h:79
ScalarNormSq scalarNormSqr() const
Scalar norm square is sum( squares of all scalars ).
Definition: MatrixBase.h:673
void unlockShape()
Definition: MatrixBase.h:789
CNT< E >::Precision EPrecision
Definition: MatrixBase.h:94
MatrixBase & setToNaN()
Definition: MatrixBase.h:583
ELT getAnyElt(int i, int j) const
Definition: MatrixBase.h:667
MatrixView_< ELT > operator()(int i, int j, int m, int n)
Definition: MatrixBase.h:603
K::ScalarNormSq ScalarNormSq
Definition: CompositeNumericalTypes.h:166
Vector_< ELT > & updAsVector()
Definition: MatrixBase.h:803
const MatrixCommitment & getCharacterCommitment() const
MatrixBase< ESqTHerm > TSqTHerm
Definition: MatrixBase.h:116
MatrixBase(const MatrixCommitment &commitment, int m, int n, const ELT *cppInitialValuesByRow)
Initializing constructor with the initially-allocated elements initialized from a C++ array of elemen...
Definition: MatrixBase.h:238
EScalarNormSq ScalarNormSq
Definition: MatrixBase.h:101
const RowVectorView_< ELT > & getAsRowVectorView() const
Definition: MatrixBase.h:810
ptrdiff_t getContiguousScalarDataLength() const
Definition: MatrixBase.h:838
K::TReal TReal
Definition: CompositeNumericalTypes.h:141
MatrixBase & copyAssign(const MatrixBase &b)
Copy assignment is a deep copy but behavior depends on type of lhs: if view, rhs must match...
Definition: MatrixBase.h:196
MatrixBase< EStandard > TStandard
Definition: MatrixBase.h:112
CNT< E >::TNormalize ENormalize
Definition: MatrixBase.h:87
This is the vector class intended to appear in user code for large, variable size column vectors...
Definition: BigMatrix.h:171
void elementwiseSubtractScalar(const S &s, typename EltResult< S >::Sub &) const
This is a dataless rehash of the MatrixBase class to specialize it for RowVectors.
Definition: BigMatrix.h:165
CNT< E >::TImag EImag
Definition: MatrixBase.h:79
void elementwiseSubtractFromScalar(const S &, typename MatrixBase< S >::template EltResult< E >::Sub &) const
Definition: BigMatrix.h:435
int getNScalarsPerElement() const
This is the number of consecutive scalars used to represent one element of type ELT.
Definition: MatrixBase.h:830
const ELT & operator()(int i, int j) const
Definition: MatrixBase.h:658
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with o...
Definition: Assembler.h:37
ptrdiff_t nelt() const
Return the number of elements in the logical shape of this matrix.
Definition: MatrixBase.h:147
CNT< ScalarNormSq >::TSqrt norm() const
Definition: MatrixBase.h:725
CNT< E >::TNeg ENeg
Definition: MatrixBase.h:76
K::TSqrt TSqrt
Definition: CompositeNumericalTypes.h:154
VectorBase< ELT > & updAsVectorBase()
Definition: MatrixBase.h:807
ScalarNormSq normSqr() const
This is the scalar Frobenius norm, and its square.
Definition: MatrixBase.h:722
MatrixHelper< Scalar > & updHelper()
Definition: MatrixBase.h:865
MatrixBase & elementwiseSubtractScalarInPlace(const S &s)
Set M(i,j)-=s for every element of M and some value s.
CNT< E >::TStandard EStandard
Definition: MatrixBase.h:85
Definition: MatrixBase.h:128
static TSqrt sqrt(const K &t)
Definition: CompositeNumericalTypes.h:239
void commitTo(const MatrixCommitment &mc)
Change the handle commitment for this matrix handle; only allowed if the handle is currently clear...
Definition: MatrixBase.h:123
CNT< E >::THerm EHerm
Definition: MatrixBase.h:81
K::Scalar Scalar
Definition: CompositeNumericalTypes.h:160
A MatrixCharacter is a set containing a value for each of the matrix characteristics except element t...
Definition: MatrixCharacteristics.h:597
K::TNormalize TNormalize
Definition: CompositeNumericalTypes.h:158
MatrixBase()
The default constructor builds a 0x0 matrix managed by a helper that understands how many scalars the...
Definition: MatrixBase.h:160
CNT< E >::TComplex EComplex
Definition: MatrixBase.h:80
MatrixBase & elementwiseDivideFromLeftInPlace(const MatrixBase< EE > &)
M(i,j) = R(i,j) / M(i,j); R must have same dimensions as this.
MatrixBase & rowAndColScaleInPlace(const VectorBase< ER > &r, const VectorBase< EC > &c)
M = diag(r) * M * diag(c); r must have nrow() elements; must have ncol() elements.
void rowAndColScale(const VectorBase< ER > &r, const VectorBase< EC > &c, typename EltResult< typename VectorBase< ER >::template EltResult< EC >::Mul >::Mul &out) const
Definition: BigMatrix.h:337
MatrixBase & elementwiseMultiplyFromLeftInPlace(const MatrixBase< EE > &)
M(i,j) = R(i,j) * M(i,j); R must have same dimensions as this.
void elementwiseDivideFromLeft(const MatrixBase< EE > &, typename MatrixBase< EE >::template EltResult< E >::Dvd &) const
Definition: BigMatrix.h:533
MatrixBase & elementwiseAssign(const S &s)
Set M(i,j)=s for every element of M and some value s.
MatrixView_< EHerm > operator~()
Definition: MatrixBase.h:611
void replaceContiguousScalarData(const Scalar *newData, ptrdiff_t length)
Definition: MatrixBase.h:850
VectorView_< ELT > updCol(int j)
Definition: BigMatrix.h:261
MatrixBase & operator/=(const StdNumber &t)
Definition: MatrixBase.h:290
void replaceContiguousScalarData(Scalar *newData, ptrdiff_t length, bool takeOwnership)
Definition: MatrixBase.h:847
MatrixBase & resizeKeep(int m, int n)
Change the size of this matrix, retaining as much of the old data as will fit.
Definition: MatrixBase.h:779
const TNeg & operator-() const
Definition: MatrixBase.h:764
const Matrix_< ELT > & getAsMatrix() const
Definition: MatrixBase.h:794
Scalar * updContiguousScalarData()
Definition: MatrixBase.h:844
MatrixBase< EHerm > THerm
Definition: MatrixBase.h:108
K::TImag TImag
Definition: CompositeNumericalTypes.h:142
CNT< E >::Number ENumber
Definition: MatrixBase.h:92
Definition: Exception.h:298
RowVectorView_< ELT > updRow(int i)
Definition: BigMatrix.h:279
ELT & updElt(int i, int j)
Definition: MatrixBase.h:656
ELT E
Definition: MatrixBase.h:75
MatrixBase & viewAssign(const MatrixBase &src)
View assignment is a shallow copy, meaning that we disconnect the MatrixBase from whatever it used to...
Definition: MatrixBase.h:211
TNeg & operator-()
Definition: MatrixBase.h:765
VectorView_< ELT > col(int j) const
Definition: BigMatrix.h:252
const VectorView_< ELT > & getAsVectorView() const
Definition: MatrixBase.h:797
MatrixBase(const MatrixCommitment &commitment, const MatrixCharacter &character, int spacing, const Scalar *data)
Construct a read-only view of pre-existing data.
Definition: MatrixBase.h:256
MatrixBase(const MatrixCommitment &commitment, MatrixHelper< Scalar > &source, const typename MatrixHelper< Scalar >::ShallowCopy &shallow)
Definition: MatrixBase.h:271
TStandard standardize() const
Return a Matrix of the same shape and contents as this one but with the element type converted to one...
Definition: MatrixBase.h:710
VectorView_< ELT > operator()(int j)
Definition: MatrixBase.h:595
MatrixBase(const MatrixCommitment &commitment, int m, int n)
This constructor takes a handle commitment and allocates the default matrix for that kind of commitme...
Definition: MatrixBase.h:180
SimTK_Real Real
This is the default compiled-in floating point type for SimTK, either float or double.
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:606
MatrixBase & scalarMultiplyInPlace(const S &)
Set M(i,j) = M(i,j)*S for some "scalar" S.
CNT< E >::TWithoutNegator EWithoutNegator
Definition: MatrixBase.h:77
MatrixBase & operator-=(const MatrixBase &r)
Definition: MatrixBase.h:292
MatrixBase & operator*=(const StdNumber &t)
Definition: MatrixBase.h:289
MatrixView_< ELT > operator()(int i, int j, int m, int n) const
Definition: MatrixBase.h:601
Matrix_< ELT > & updAsMatrix()
Definition: MatrixBase.h:795
static TStandard standardize(const K &t)
Definition: CompositeNumericalTypes.h:241
const RowVectorBase< ELT > & getAsRowVectorBase() const
Definition: MatrixBase.h:818
RowVector_< ELT > colSum() const
Form the column sums of this matrix, returned as a RowVector.
Definition: MatrixBase.h:740
(Advanced) This class is identical to RowVector_ except that it has shallow (reference) copy and assi...
Definition: BigMatrix.h:173
EltResult< EE >::Mul rowScale(const VectorBase< EE > &r) const
Definition: MatrixBase.h:397
CNT< E >::TInvert EInvert
Definition: MatrixBase.h:86
RowVectorView_< ELT > operator[](int i)
Definition: MatrixBase.h:593
MatrixBase< EE >::template EltResult< EE >::Dvd elementwiseDivideFromLeft(const MatrixBase< EE > &m) const
Definition: MatrixBase.h:575
MatrixBase< typename CNT< E >::template Result< P >::Sub > Sub
Definition: MatrixBase.h:132
bool isResizeable() const
Return true if either dimension of this Matrix is resizable.
Definition: MatrixBase.h:150
RowVector_< ELT > & updAsRowVector()
Definition: MatrixBase.h:816
bool hasContiguousData() const
Definition: MatrixBase.h:837
K::TSqTHerm TSqTHerm
Definition: CompositeNumericalTypes.h:147
MatrixBase< EComplex > TComplex
Definition: MatrixBase.h:107
CNT< E >::StdNumber EStdNumber
Definition: MatrixBase.h:93
MatrixView_< ELT > updBlock(int i, int j, int m, int n)
Definition: BigMatrix.h:211
MatrixBase< typename CNT< E >::TInvert > elementwiseInvert() const
Definition: MatrixBase.h:452
EltResult< S >::Sub elementwiseSubtractScalar(const S &s) const
Definition: MatrixBase.h:492
VectorView_< ELT > diag()
This non-const version of diag() is an alternate name for updDiag() available for historical reasons...
Definition: MatrixBase.h:621
MatrixBase< EImag > TImag
Definition: MatrixBase.h:106
K::Precision Precision
Definition: CompositeNumericalTypes.h:164
int getPackedSizeofElement() const
This is like sizeof(ELT), but returning the number of bytes we use to store the element which may be ...
Definition: MatrixBase.h:835
EltResult< EE >::Dvd elementwiseDivide(const MatrixBase< EE > &m) const
Definition: MatrixBase.h:559
TNeg & updNegate()
Definition: MatrixBase.h:762
MatrixBase< E > TPosTrans
Definition: MatrixBase.h:109
void colScale(const VectorBase< EE > &c, typename EltResult< EE >::Mul &out) const
Vector_< ELT > rowSum() const
Form the row sums of this matrix, returned as a Vector.
Definition: MatrixBase.h:751
(Advanced) This class is identical to Matrix_ except that it has shallow (reference) copy and assignm...
Definition: BigMatrix.h:167
MatrixBase & elementwiseAssign(int s)
Overloaded to allow an integer argument, which is converted to Real.
Definition: MatrixBase.h:444
K::TInvert TInvert
Definition: CompositeNumericalTypes.h:157
MatrixBase & scalarAddInPlace(const S &s)
Add a scalar to M&#39;s diagonal.
Definition: MatrixBase.h:334
CNT< E >::TSqHermT ESqHermT
Definition: MatrixBase.h:88
MatrixView_< EHerm > updTranspose()
Definition: BigMatrix.h:230
CNT< E >::TReal EReal
Definition: MatrixBase.h:78
VectorView_< ELT > updDiag()
Select main diagonal (of largest leading square if rectangular) and return it as a writable view of t...
Definition: BigMatrix.h:245
MatrixBase(const MatrixCommitment &commitment, const MatrixCharacter &character, int spacing, Scalar *data)
Construct a writable view of pre-existing data.
Definition: MatrixBase.h:263
ENumber Number
Definition: MatrixBase.h:98
MatrixBase & scalarSubtractFromLeftInPlace(const S &s)
Set M(i,i) = S - M(i,i), M(i,j) = -M(i,j) for i!=j.
Definition: MatrixBase.h:350
MatrixBase< typename CNT< E >::template Result< P >::Add > Add
Definition: MatrixBase.h:131
RowVectorBase< ELT > & updAsRowVectorBase()
Definition: MatrixBase.h:820
CNT< ScalarNormSq >::TSqrt normRMS() const
We only allow RMS norm if the elements are scalars.
Definition: MatrixBase.h:731
void elementwiseMultiplyFromLeft(const MatrixBase< EE > &, typename MatrixBase< EE >::template EltResult< E >::Mul &) const
Definition: BigMatrix.h:484
MatrixBase(const TNeg &b)
Implicit conversion from matrix with negated elements (otherwise this is just like the copy construct...
Definition: MatrixBase.h:190
MatrixBase< typename CNT< E >::template Result< P >::Dvd > Dvd
Definition: MatrixBase.h:130
int ncol() const
Return the number of columns n in the logical shape of this matrix.
Definition: MatrixBase.h:138
#define SimTK_THROW1(exc, a1)
Definition: Exception.h:316
VectorView_< ELT > diag() const
Select main diagonal (of largest leading square if rectangular) and return it as a read-only view of ...
Definition: BigMatrix.h:238
MatrixBase< EInvert > TInvert
Definition: MatrixBase.h:113
const MatrixCharacter & getMatrixCharacter() const
Definition: MatrixBase.h:119
MatrixBase< ENormalize > TNormalize
Definition: MatrixBase.h:114
CNT< E >::TPosTrans EPosTrans
Definition: MatrixBase.h:82
MatrixBase< EAbs > TAbs
Definition: MatrixBase.h:111
void lockShape()
Definition: MatrixBase.h:783
bool isResizeable() const
Definition: MatrixCharacteristics.h:925
K::TPosTrans TPosTrans
Definition: CompositeNumericalTypes.h:145
EStdNumber StdNumber
Definition: MatrixBase.h:99
const MatrixView_< ELT > & getAsMatrixView() const
Definition: MatrixBase.h:792
MatrixBase< EWithoutNegator > TWithoutNegator
Definition: MatrixBase.h:104
Definition: MatrixBase.h:154
MatrixBase< EReal > TReal
Definition: MatrixBase.h:105
MatrixBase & elementwiseInvertInPlace()
Set M(i,j) = M(i,j)^-1.
Definition: BigMatrix.h:361
MatrixBase & rowScaleInPlace(const VectorBase< EE > &)
M = diag(r) * M; r must have nrow() elements.
EltResult< S >::Add elementwiseAddScalar(const S &s) const
Definition: MatrixBase.h:472
This is the matrix class intended to appear in user code for large, variable size matrices...
Definition: BigMatrix.h:168
CNT< E >::TSqTHerm ESqTHerm
Definition: MatrixBase.h:89
MatrixBase & elementwiseAddScalarInPlace(const S &s)
Set M(i,j)+=s for every element of M and some value s.
MatrixBase & operator+=(const MatrixBase &r)
Definition: MatrixBase.h:291
K::StdNumber StdNumber
Definition: CompositeNumericalTypes.h:163
MatrixBase< S >::template EltResult< E >::Sub elementwiseSubtractFromScalar(const S &s) const
Definition: MatrixBase.h:515
MatrixBase & operator=(const MatrixBase< EE > &b)
Definition: MatrixBase.h:297
MatrixBase & setToZero()
Definition: MatrixBase.h:584
MatrixBase(const MatrixCommitment &commitment, int m, int n, const ELT &initialValue)
Initializing constructor with all of the initially-allocated elements initialized to the same value...
Definition: MatrixBase.h:224
Specialized information about Composite Numerical Types which allows us to define appropriate templat...
Definition: CompositeNumericalTypes.h:136
MatrixBase & operator-=(const MatrixBase< EE > &b)
Definition: MatrixBase.h:301
const ELT & getElt(int i, int j) const
Element selection for stored elements.
Definition: MatrixBase.h:655
void invertInPlace()
Definition: MatrixBase.h:640
void getAnyElt(int i, int j, ELT &value) const
This returns a copy of the element value for any position in the logical matrix, regardless of whethe...
Definition: MatrixBase.h:665
MatrixBase(const MatrixCommitment &commitment)
This constructor takes a handle commitment and allocates the default matrix for that kind of commitme...
Definition: MatrixBase.h:172
EltResult< EE >::Mul colScale(const VectorBase< EE > &c) const
Definition: MatrixBase.h:410
CNT< E >::ScalarNormSq EScalarNormSq
Definition: MatrixBase.h:95
MatrixBase & scalarDivideInPlace(const S &)
Set M(i,j) = M(i,j)/S for some "scalar" S.
MatrixBase & operator=(const MatrixBase &b)
Definition: MatrixBase.h:200
MatrixBase(int m, int n)
This constructor allocates the default matrix a completely uncommitted matrix commitment, given particular initial dimensions.
Definition: MatrixBase.h:164
const MatrixHelper< Scalar > & getHelper() const
Definition: MatrixBase.h:864
MatrixView_< EHerm > transpose() const
Definition: BigMatrix.h:222
CNT< E >::TAbs EAbs
Definition: MatrixBase.h:84
const Vector_< ELT > & getAsVector() const
Definition: MatrixBase.h:801
void elementwiseAddScalar(const S &s, typename EltResult< S >::Add &) const
void dump(const char *msg=0) const
Matlab-compatible debug output.
Definition: MatrixBase.h:643
K::TNeg TNeg
Definition: CompositeNumericalTypes.h:139
const VectorBase< ELT > & getAsVectorBase() const
Definition: MatrixBase.h:805
This is a dataless rehash of the MatrixBase class to specialize it for Vectors.
Definition: BigMatrix.h:164
MatrixBase & scalarDivideFromLeftInPlace(const S &)
Set M(i,j) = S/M(i,j) for some "scalar" S.
const MatrixCharacter & getMatrixCharacter() const
MatrixView_< EHerm > operator~() const
Definition: MatrixBase.h:610
K::TStandard TStandard
Definition: CompositeNumericalTypes.h:156
Definition: MatrixBase.h:153
K::TWithoutNegator TWithoutNegator
Definition: CompositeNumericalTypes.h:140
CNT< E >::Scalar EScalar
Definition: MatrixBase.h:91
Represents a variable size row vector; much less common than the column vector type Vector_...
Definition: BigMatrix.h:174
void commitTo(const MatrixCommitment &)
A MatrixCommitment provides a set of acceptable matrix characteristics.
Definition: MatrixCharacteristics.h:832
VectorView_< ELT > & updAsVectorView()
Definition: MatrixBase.h:799
void swapOwnedContiguousScalarData(Scalar *newData, ptrdiff_t length, Scalar *&oldData)
Definition: MatrixBase.h:853
void elementwiseDivide(const MatrixBase< EE > &, typename EltResult< EE >::Dvd &) const
void rowScale(const VectorBase< EE > &r, typename EltResult< EE >::Mul &out) const
Return type is a new matrix which will have the same dimensions as &#39;this&#39; but will have element types...
MatrixBase< EE >::template EltResult< E >::Mul elementwiseMultiplyFromLeft(const MatrixBase< EE > &m) const
Definition: MatrixBase.h:545
MatrixBase(MatrixHelperRep< Scalar > *hrep)
Helper rep-stealing constructor.
Definition: MatrixBase.h:861
MatrixView_< ELT > block(int i, int j, int m, int n) const
Definition: BigMatrix.h:200
EltResult< typename VectorBase< ER >::template EltResult< EC >::Mul >::Mul rowAndColScale(const VectorBase< ER > &r, const VectorBase< EC > &c) const
Definition: MatrixBase.h:427
const MatrixCommitment & getCharacterCommitment() const
Definition: MatrixBase.h:118
MatrixBase & elementwiseDivideInPlace(const MatrixBase< EE > &)
M(i,j) /= R(i,j); R must have same dimensions as this.
MatrixBase(const MatrixCommitment &commitment, const MatrixHelper< Scalar > &source, const typename MatrixHelper< Scalar >::ShallowCopy &shallow)
Definition: MatrixBase.h:275
const Scalar * getContiguousScalarData() const
Definition: MatrixBase.h:841
K::TComplex TComplex
Definition: CompositeNumericalTypes.h:143
This is the common base class for Simbody&#39;s Vector_ and Matrix_ classes for handling large...
Definition: BigMatrix.h:163
void elementwiseMultiply(const MatrixBase< EE > &, typename EltResult< EE >::Mul &) const
K::Number Number
Definition: CompositeNumericalTypes.h:162
const MatrixBase & operator+() const
Definition: MatrixBase.h:760
MatrixBase & operator=(const ELT &t)
Matrix assignment to an element sets only the diagonal elements to the indicated value; everything el...
Definition: MatrixBase.h:314
static TAbs abs(const K &t)
Definition: CompositeNumericalTypes.h:240
MatrixBase & scalarAssign(const S &s)
Set M&#39;s diagonal elements to a "scalar" value S, and all off-diagonal elements to zero...
Definition: MatrixBase.h:325
void abs(TAbs &mabs) const
abs() is elementwise absolute value; that is, the return value has the same dimension as this Matrix ...
Definition: MatrixBase.h:687
MatrixBase(const MatrixBase< EE > &b)
Definition: MatrixBase.h:294
MatrixBase & elementwiseMultiplyInPlace(const MatrixBase< EE > &)
M(i,j) *= R(i,j); R must have same dimensions as this.
MatrixBase & colScaleInPlace(const VectorBase< EE > &)
M = M * diag(c); c must have ncol() elements.
void clear()
This restores the MatrixBase to the state it would be in had it been constructed specifying only its ...
Definition: MatrixBase.h:287
MatrixBase< ENeg > TNeg
Definition: MatrixBase.h:103
MatrixBase & setTo(const ELT &t)
Fill every element in current allocation with given element (or NaN or 0).
Definition: MatrixBase.h:582
RowVectorView_< ELT > operator[](int i) const
Definition: MatrixBase.h:592
RowVectorView_< ELT > & updAsRowVectorView()
Definition: MatrixBase.h:812
RowVector_< ELT > sum() const
Alternate name for colSum(); behaves like the Matlab function sum().
Definition: MatrixBase.h:748
MatrixBase & operator+=(const MatrixBase< EE > &b)
Definition: MatrixBase.h:299
K::TSqHermT TSqHermT
Definition: CompositeNumericalTypes.h:146
MatrixBase & resize(int m, int n)
Change the size of this matrix.
Definition: MatrixBase.h:773
const TNeg & negate() const
Definition: MatrixBase.h:761
MatrixBase & scalarMultiplyFromLeftInPlace(const S &)
Set M(i,j) = S * M(i,j) for some "scalar" S.
MatrixBase< typename CNT< E >::template Result< P >::Mul > Mul
Definition: MatrixBase.h:129
MatrixBase & negateInPlace()
Definition: MatrixBase.h:767
MatrixBase(const MatrixCommitment &commitment, const MatrixHelper< Scalar > &source, const typename MatrixHelper< Scalar >::DeepCopy &deep)
Definition: MatrixBase.h:279
(Advanced) This class is identical to Vector_ except that it has shallow (reference) copy and assignm...
Definition: BigMatrix.h:170
ELT & operator()(int i, int j)
Definition: MatrixBase.h:659
MatrixBase & elementwiseSubtractFromScalarInPlace(const S &s)
Set M(i,j) = s - M(i,j) for every element of M and some value s.
const RowVector_< ELT > & getAsRowVector() const
Definition: MatrixBase.h:814
K::THerm THerm
Definition: CompositeNumericalTypes.h:144
MatrixView_< ELT > & updAsMatrixView()
Definition: MatrixBase.h:793
VectorView_< ELT > operator()(int j) const
Definition: MatrixBase.h:594
TAbs abs() const
abs() with the result as a function return.
Definition: MatrixBase.h:698
int nrow() const
Return the number of rows m in the logical shape of this matrix.
Definition: MatrixBase.h:136
MatrixBase & scalarSubtractInPlace(const S &s)
Subtract a scalar from M&#39;s diagonal.
Definition: MatrixBase.h:343
MatrixBase(const MatrixBase &b)
Copy constructor is a deep copy (not appropriate for views!).
Definition: MatrixBase.h:184
TInvert invert() const
Definition: MatrixBase.h:634
EPrecision Precision
Definition: MatrixBase.h:100
EScalar Scalar
Definition: MatrixBase.h:97
MatrixBase< ESqHermT > TSqHermT
Definition: MatrixBase.h:115
K::TAbs TAbs
Definition: CompositeNumericalTypes.h:155
RowVectorView_< ELT > row(int i) const
Definition: BigMatrix.h:270