1 #ifndef SimTK_SIMMATRIX_SMALLMATRIX_ROW_H_ 
    2 #define SimTK_SIMMATRIX_SMALLMATRIX_ROW_H_ 
   44 template <
class E1, 
int S1, 
class E2, 
int S2> 
void 
   47     result[0] = r1[0] + r2[0];
 
   49 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void 
   53                   reinterpret_cast<const Row<N-1,E2,S2
>&>(r2), 
 
   55                               template Result<E2>::Add
>&>(result));
 
   56     result[N-1] = r1[N-1] + r2[N-1];
 
   59 template <
class E1, 
int S1, 
class E2, 
int S2> 
void 
   62     result[0] = r1[0] - r2[0];
 
   64 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void 
   68                        reinterpret_cast<const Row<N-1,E2,S2
>&>(r2), 
 
   70                                    template Result<E2>::Sub
>&>(result));
 
   71     result[N-1] = r1[N-1] - r2[N-1];
 
   74 template <
class E1, 
int S1, 
class E2, 
int S2> 
void 
   77     result[0] = r1[0] * r2[0];
 
   79 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void 
   83                         reinterpret_cast<const Row<N-1,E2,S2
>&>(r2), 
 
   85                                     template Result<E2>::Mul
>&>(result));
 
   86     result[N-1] = r1[N-1] * r2[N-1];
 
   89 template <
class E1, 
int S1, 
class E2, 
int S2> 
void 
   92     result[0] = r1[0] / r2[0];
 
   94 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void 
   98                         reinterpret_cast<const Row<N-1,E2,S2
>&>(r2), 
 
  100                                     template Result<E2>::Dvd
>&>(result));
 
  101     result[N-1] = r1[N-1] / r2[N-1];
 
  104 template <
class E1, 
int S1, 
class E2, 
int S2> 
void 
  108 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void 
  110     copy(
reinterpret_cast<Row<N-1,E1,S1
>&>(r1), 
 
  111          reinterpret_cast<const Row<N-1,E2,S2
>&>(r2));
 
  132 template <
int N, 
class ELT, 
int STRIDE> 
class Row {
 
  216     static int size() { 
return N; }
 
  217     static int nrow() { 
return 1; }
 
  218     static int ncol() { 
return N; }
 
  224         for(
int i=0;i<N;++i) sum += CNT<E>::scalarNormSqr(d[i*STRIDE]);
 
  233         for(
int i=0;i<N;++i) rsqrt[i] = CNT<E>::sqrt(d[i*STRIDE]);
 
  248         for(
int i=0;i<N;++i) rstd[i] = CNT<E>::standardize(d[i*STRIDE]);
 
  256         for (
int i=0;i<N;++i) 
sum += d[i*STRIDE];
 
  276         typedef typename MulOp::Type 
Mul;
 
  281         typedef typename MulOpNonConforming::Type 
MulNon;
 
  287         typedef typename DvdOp::Type 
Dvd;
 
  292         typedef typename AddOp::Type 
Add;
 
  297         typedef typename SubOp::Type 
Sub;
 
  344       { 
for (
int i=0;i<N;++i) d[i*STRIDE]=e; }
 
  347     explicit Row(
const ENeg& ne)
 
  348       { 
for (
int i=0;i<N;++i) d[i*STRIDE]=ne; }
 
  356     Row(
const E& e0,
const E& e1)
 
  357       { assert(N==2);(*this)[0]=e0;(*this)[1]=e1; }
 
  358     Row(
const E& e0,
const E& e1,
const E& e2)
 
  359       { assert(N==3);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2; }
 
  360     Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3)
 
  361       { assert(N==4);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;(*this)[3]=e3; }
 
  362     Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4)
 
  363       { assert(N==5);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
 
  364         (*this)[3]=e3;(*this)[4]=e4; }
 
  365     Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5)
 
  366       { assert(N==6);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
 
  367         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5; }
 
  368     Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5,
const E& e6)
 
  369       { assert(N==7);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
 
  370         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6; }
 
  371     Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5,
const E& e6,
const E& e7)
 
  372       { assert(N==8);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
 
  373         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6;(*this)[7]=e7; }
 
  374     Row(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5,
const E& e6,
const E& e7,
const E& e8)
 
  375       { assert(N==9);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
 
  376         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6;(*this)[7]=e7;(*this)[8]=e8; }
 
  380     template <
class EE> 
explicit Row(
const EE* p)
 
  381       { assert(p); 
for(
int i=0;i<N;++i) d[i*STRIDE]=p[i]; }
 
  383       { assert(p); 
for(
int i=0;i<N;++i) d[i*STRIDE]=p[i]; 
return *
this; }
 
  391       { 
for(
int i=0;i<N;++i) d[i*STRIDE] += r[i]; 
return *
this; }
 
  393       { 
for(
int i=0;i<N;++i) d[i*STRIDE] -= -(r[i]); 
return *
this; }
 
  395       { 
for(
int i=0;i<N;++i) d[i*STRIDE] -= r[i]; 
return *
this; }
 
  397       { 
for(
int i=0;i<N;++i) d[i*STRIDE] += -(r[i]); 
return *
this; }
 
  425     template <
int MatNCol, 
class EE, 
int CS, 
int RS> 
 
  449     const E& 
operator[](
int i)
 const { assert(0 <= i && i < N); 
return d[i*STRIDE]; }
 
  450     E&       
operator[](
int i)         { assert(0 <= i && i < N); 
return d[i*STRIDE]; }
 
  474             for (
int j=0; j<N; ++j) 
 
  476             return elementwiseNormalized;
 
  495         { 
return *
reinterpret_cast<const TPosTrans*
>(
this); }
 
  497         { 
return *
reinterpret_cast<TPosTrans*
>(
this); }
 
  505         const EImag* p = 
reinterpret_cast<const EImag*
>(
this);
 
  506         return *
reinterpret_cast<const TImag*
>(p+offs);
 
  510         EImag* p = 
reinterpret_cast<EImag*
>(
this);
 
  511         return *
reinterpret_cast<TImag*
>(p+offs);
 
  529         for (
int j=0; j<N; ++j) result[j] = (*
this)[j] * e;
 
  535         for (
int j=0; j<N; ++j) result[j] = e * (*
this)[j];
 
  544         for (
int j=0; j<N; ++j) result[j] = (*
this)[j] / e;
 
  550         for (
int j=0; j<N; ++j) result[j] = e / (*
this)[j];
 
  557         for (
int j=0; j<N; ++j) result[j] = (*
this)[j] + e;
 
  565         for (
int j=0; j<N; ++j) result[j] = (*
this)[j] - e;
 
  571         for (
int j=0; j<N; ++j) result[j] = e - (*
this)[j];
 
  587       { 
for(
int i=0;i<N;++i) d[i*STRIDE] = ee; 
return *
this; }
 
  589       { 
for(
int i=0;i<N;++i) d[i*STRIDE] += ee; 
return *
this; }
 
  591       { 
for(
int i=0;i<N;++i) d[i*STRIDE] -= ee; 
return *
this; }
 
  593       { 
for(
int i=0;i<N;++i) d[i*STRIDE] = ee - d[i*STRIDE]; 
return *
this; }
 
  595       { 
for(
int i=0;i<N;++i) d[i*STRIDE] *= ee; 
return *
this; }
 
  597       { 
for(
int i=0;i<N;++i) d[i*STRIDE] = ee * d[i*STRIDE]; 
return *
this; }
 
  599       { 
for(
int i=0;i<N;++i) d[i*STRIDE] /= ee; 
return *
this; }
 
  601       { 
for(
int i=0;i<N;++i) d[i*STRIDE] = ee / d[i*STRIDE]; 
return *
this; }
 
  632         assert(0 <= j && j + NN <= N);
 
  642         assert(0 <= j && j + NN <= N);
 
  651         assert(0 <= j && j + N <= NN);
 
  659         assert(0 <= j && j + N <= NN);
 
  667         assert(0 <= p && p < N);
 
  670         for (
int i=0; i<N-1; ++i, ++nxt) {
 
  672             out[i] = (*this)[nxt];
 
  694         assert(0 <= p && p <= N);
 
  698         for (
int i=0; i<N; ++i, ++nxt) {
 
  699             if (i==p) out[nxt++] = v;
 
  700             out[nxt] = (*this)[i];
 
  707     static const Row& 
getAs(
const ELT* p)  {
return *
reinterpret_cast<const Row*
>(p);}
 
  719         for (
int j=0; j<N; ++j)
 
  728         bool seenInf = 
false;
 
  729         for (
int j=0; j<N; ++j) {
 
  730             const ELT& e = (*this)[j];
 
  743         for (
int j=0; j<N; ++j)
 
  755     template <
class E2, 
int CS2>
 
  757         for (
int j=0; j<N; ++j)
 
  766     template <
class E2, 
int CS2>
 
  780         for (
int j=0; j<N; ++j)
 
  795 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline 
  796 typename Row<N,E1,S1>::template Result< Row<N,E2,S2> >::Add
 
  799         ::AddOp::perform(l,r);
 
  803 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline 
  804 typename Row<N,E1,S1>::template Result< Row<N,E2,S2> >::Sub
 
  807         ::SubOp::perform(l,r);
 
  811 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool 
  813     for (
int i=0; i < N; ++i) 
if (l[i] != r[i]) 
return false;
 
  817 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool 
  821 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool 
  823 {   
for (
int i=0; i < N; ++i) 
if (l[i] >= r[i]) 
return false;
 
  826 template <
int N, 
class E1, 
int S1, 
class E2> 
inline bool 
  828 {   
for (
int i=0; i < N; ++i) 
if (v[i] >= e) 
return false;
 
  832 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool 
  834 {   
for (
int i=0; i < N; ++i) 
if (l[i] <= r[i]) 
return false;
 
  837 template <
int N, 
class E1, 
int S1, 
class E2> 
inline bool 
  839 {   
for (
int i=0; i < N; ++i) 
if (v[i] <= e) 
return false;
 
  844 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool 
  846 {   
for (
int i=0; i < N; ++i) 
if (l[i] > r[i]) 
return false;
 
  850 template <
int N, 
class E1, 
int S1, 
class E2> 
inline bool 
  852 {   
for (
int i=0; i < N; ++i) 
if (v[i] > e) 
return false;
 
  857 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool 
  859 {   
for (
int i=0; i < N; ++i) 
if (l[i] < r[i]) 
return false;
 
  863 template <
int N, 
class E1, 
int S1, 
class E2> 
inline bool 
  865 {   
for (
int i=0; i < N; ++i) 
if (v[i] < e) 
return false;
 
  879 template <
int N, 
class E, 
int S> 
inline 
  880 typename Row<N,E,S>::template Result<float>::Mul
 
  883 template <
int N, 
class E, 
int S> 
inline 
  884 typename Row<N,E,S>::template Result<float>::Mul
 
  887 template <
int N, 
class E, 
int S> 
inline 
  888 typename Row<N,E,S>::template Result<double>::Mul
 
  891 template <
int N, 
class E, 
int S> 
inline 
  892 typename Row<N,E,S>::template Result<double>::Mul
 
  896 template <
int N, 
class E, 
int S> 
inline 
  897 typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Mul
 
  899 template <
int N, 
class E, 
int S> 
inline 
  900 typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Mul
 
  906 template <
int N, 
class E, 
int S, 
class R> 
inline 
  907 typename Row<N,E,S>::template Result<std::complex<R> >::Mul
 
  910 template <
int N, 
class E, 
int S, 
class R> 
inline 
  911 typename Row<N,E,S>::template Result<std::complex<R> >::Mul
 
  915 template <
int N, 
class E, 
int S, 
class R> 
inline 
  916 typename Row<N,E,S>::template Result<std::complex<R> >::Mul
 
  918 template <
int N, 
class E, 
int S, 
class R> 
inline 
  919 typename Row<N,E,S>::template Result<std::complex<R> >::Mul
 
  923 template <
int N, 
class E, 
int S, 
class R> 
inline 
  924 typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Mul
 
  926 template <
int N, 
class E, 
int S, 
class R> 
inline 
  927 typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Mul
 
  936 template <
int N, 
class E, 
int S> 
inline 
  937 typename Row<N,E,S>::template Result<float>::Dvd
 
  940 template <
int N, 
class E, 
int S> 
inline 
  941 typename CNT<float>::template Result<Row<N,E,S> >::Dvd
 
  945 template <
int N, 
class E, 
int S> 
inline 
  946 typename Row<N,E,S>::template Result<double>::Dvd
 
  949 template <
int N, 
class E, 
int S> 
inline 
  950 typename CNT<double>::template Result<Row<N,E,S> >::Dvd
 
  955 template <
int N, 
class E, 
int S> 
inline 
  956 typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Dvd
 
  958 template <
int N, 
class E, 
int S> 
inline 
  966 template <
int N, 
class E, 
int S, 
class R> 
inline 
  967 typename Row<N,E,S>::template Result<std::complex<R> >::Dvd
 
  970 template <
int N, 
class E, 
int S, 
class R> 
inline 
  971 typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Dvd
 
  976 template <
int N, 
class E, 
int S, 
class R> 
inline 
  977 typename Row<N,E,S>::template Result<std::complex<R> >::Dvd
 
  979 template <
int N, 
class E, 
int S, 
class R> 
inline 
  980 typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Dvd
 
  984 template <
int N, 
class E, 
int S, 
class R> 
inline 
  985 typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Dvd
 
  987 template <
int N, 
class E, 
int S, 
class R> 
inline 
  988 typename CNT<R>::template Result<Row<N,E,S> >::Dvd
 
  999 template <
int N, 
class E, 
int S> 
inline 
 1000 typename Row<N,E,S>::template Result<float>::Add
 
 1003 template <
int N, 
class E, 
int S> 
inline 
 1004 typename Row<N,E,S>::template Result<float>::Add
 
 1007 template <
int N, 
class E, 
int S> 
inline 
 1008 typename Row<N,E,S>::template Result<double>::Add
 
 1011 template <
int N, 
class E, 
int S> 
inline 
 1012 typename Row<N,E,S>::template Result<double>::Add
 
 1016 template <
int N, 
class E, 
int S> 
inline 
 1017 typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Add
 
 1019 template <
int N, 
class E, 
int S> 
inline 
 1020 typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Add
 
 1026 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1027 typename Row<N,E,S>::template Result<std::complex<R> >::Add
 
 1030 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1031 typename Row<N,E,S>::template Result<std::complex<R> >::Add
 
 1035 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1036 typename Row<N,E,S>::template Result<std::complex<R> >::Add
 
 1038 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1039 typename Row<N,E,S>::template Result<std::complex<R> >::Add
 
 1043 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1044 typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Add
 
 1046 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1047 typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Add
 
 1053 template <
int N, 
class E, 
int S> 
inline 
 1054 typename Row<N,E,S>::template Result<float>::Sub
 
 1057 template <
int N, 
class E, 
int S> 
inline 
 1058 typename CNT<float>::template Result<Row<N,E,S> >::Sub
 
 1062 template <
int N, 
class E, 
int S> 
inline 
 1063 typename Row<N,E,S>::template Result<double>::Sub
 
 1066 template <
int N, 
class E, 
int S> 
inline 
 1067 typename CNT<double>::template Result<Row<N,E,S> >::Sub
 
 1072 template <
int N, 
class E, 
int S> 
inline 
 1073 typename Row<N,E,S>::template Result<typename CNT<E>::Precision>::Sub
 
 1075 template <
int N, 
class E, 
int S> 
inline 
 1083 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1084 typename Row<N,E,S>::template Result<std::complex<R> >::Sub
 
 1087 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1088 typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Sub
 
 1093 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1094 typename Row<N,E,S>::template Result<std::complex<R> >::Sub
 
 1096 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1097 typename CNT<std::complex<R> >::template Result<Row<N,E,S> >::Sub
 
 1101 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1102 typename Row<N,E,S>::template Result<typename negator<R>::StdNumber>::Sub
 
 1104 template <
int N, 
class E, 
int S, 
class R> 
inline 
 1105 typename CNT<R>::template Result<Row<N,E,S> >::Sub
 
 1110 template <
int N, 
class E, 
int S, 
class CHAR, 
class TRAITS> 
inline 
 1111 std::basic_ostream<CHAR,TRAITS>&
 
 1112 operator<<(std::basic_ostream<CHAR,TRAITS>& o, 
const Row<N,E,S>& v) {
 
 1113     o << 
"[" << v[0]; 
for(
int i=1;i<N;++i) o<<
','<<v[i]; o<<
']'; 
return o;
 
 1118 template <
int N, 
class E, 
int S, 
class CHAR, 
class TRAITS> 
inline 
 1119 std::basic_istream<CHAR,TRAITS>&
 
 1121     CHAR openBracket, closeBracket;
 
 1122     is >> openBracket; 
if (is.fail()) 
return is;
 
 1123     if (openBracket==CHAR(
'('))
 
 1124         closeBracket = CHAR(
')');
 
 1125     else if (openBracket==CHAR(
'['))
 
 1126         closeBracket = CHAR(
']');
 
 1128         closeBracket = CHAR(0);
 
 1129         is.unget(); 
if (is.fail()) 
return is;
 
 1132     for (
int i=0; i < N; ++i) {
 
 1134         if (is.fail()) 
return is;
 
 1136             CHAR c; is >> c; 
if (is.fail()) 
return is;
 
 1137             if (c != 
',') is.unget();
 
 1138             if (is.fail()) 
return is;
 
 1144     if (closeBracket != CHAR(0)) {
 
 1145         CHAR closer; is >> closer; 
if (is.fail()) 
return is;
 
 1146         if (closer != closeBracket) {
 
 1147             is.unget(); 
if (is.fail()) 
return is;
 
 1148             is.setstate( std::ios::failbit );
 
Mandatory first inclusion for any Simbody source or header file.
 
Specialized information about Composite Numerical Types which allows us to define appropriate templat...
Definition: CompositeNumericalTypes.h:136
 
static K getNaN()
Definition: CompositeNumericalTypes.h:246
 
K::ULessScalar ULessScalar
Definition: CompositeNumericalTypes.h:161
 
static double getDefaultTolerance()
Definition: CompositeNumericalTypes.h:269
 
K::ScalarNormSq ScalarNormSq
Definition: CompositeNumericalTypes.h:166
 
K::StdNumber StdNumber
Definition: CompositeNumericalTypes.h:163
 
static TSqrt sqrt(const K &t)
Definition: CompositeNumericalTypes.h:239
 
K::TSqHermT TSqHermT
Definition: CompositeNumericalTypes.h:146
 
K::TSqrt TSqrt
Definition: CompositeNumericalTypes.h:154
 
K::TInvert TInvert
Definition: CompositeNumericalTypes.h:157
 
K::TNormalize TNormalize
Definition: CompositeNumericalTypes.h:158
 
K::TWithoutNegator TWithoutNegator
Definition: CompositeNumericalTypes.h:140
 
K::TReal TReal
Definition: CompositeNumericalTypes.h:141
 
static TStandard standardize(const K &t)
Definition: CompositeNumericalTypes.h:241
 
K::THerm THerm
Definition: CompositeNumericalTypes.h:144
 
K::TPosTrans TPosTrans
Definition: CompositeNumericalTypes.h:145
 
K::TNeg TNeg
Definition: CompositeNumericalTypes.h:139
 
K::TStandard TStandard
Definition: CompositeNumericalTypes.h:156
 
K::TComplex TComplex
Definition: CompositeNumericalTypes.h:143
 
K::TSqTHerm TSqTHerm
Definition: CompositeNumericalTypes.h:147
 
K::TImag TImag
Definition: CompositeNumericalTypes.h:142
 
K::Precision Precision
Definition: CompositeNumericalTypes.h:164
 
K::Scalar Scalar
Definition: CompositeNumericalTypes.h:160
 
K::TAbs TAbs
Definition: CompositeNumericalTypes.h:155
 
K::Number Number
Definition: CompositeNumericalTypes.h:162
 
This class represents a small matrix whose size is known at compile time, containing elements of any ...
Definition: Mat.h:97
 
Definition: NTraits.h:436
 
This is a fixed-length row vector designed for no-overhead inline computation.
Definition: Row.h:132
 
static const Row & getSubRow(const Row< NN, ELT, STRIDE > &r, int j)
Extract a subvector of type Row from a longer one that has the same element type and stride,...
Definition: Row.h:650
 
Row & scalarTimesEqFromLeft(int ee)
Definition: Row.h:611
 
TSqrt sqrt() const
Definition: Row.h:231
 
Row & operator/=(const EE &e)
Definition: Row.h:582
 
Row< N, EAbs, 1 > TAbs
Definition: Row.h:199
 
Vec< N, ESqrt, 1 > TSqrt
Definition: Row.h:198
 
Row< N, typename CNT< E >::template Result< EE >::Dvd > scalarDivide(const EE &e) const
Definition: Row.h:542
 
EULessScalar ULessScalar
Definition: Row.h:210
 
TNormalize normalize() const
Definition: Row.h:469
 
Row & operator+=(const EE &e)
Definition: Row.h:579
 
THerm & operator~()
Definition: Row.h:486
 
Row & scalarTimesEq(int ee)
Definition: Row.h:608
 
Row< N, typename CNT< E >::template Result< EE >::Mul > scalarMultiply(const EE &e) const
Definition: Row.h:527
 
Row< N+1, ELT, 1 > append1(const EE &v) const
Return a row one larger than this one by adding an element to the end.
Definition: Row.h:680
 
Row & scalarDivideEq(const EE &ee)
Definition: Row.h:598
 
Row(const E &e0, const E &e1, const E &e2)
Definition: Row.h:358
 
const E & operator()(int i) const
Definition: Row.h:451
 
bool isNumericallyEqual(const Row< N, E2, CS2 > &r, double tol) const
Test whether this row is numerically equal to some other row with the same shape, using a specified t...
Definition: Row.h:756
 
Row< N, typename CNT< EE >::template Result< E >::Mul > scalarMultiplyFromLeft(const EE &e) const
Definition: Row.h:533
 
void setToNaN()
Set every scalar in this Row to NaN; this is the default initial value in Debug builds,...
Definition: Row.h:616
 
Row< MatNCol, typename CNT< E >::template Result< EE >::Mul > conformingMultiply(const Mat< N, MatNCol, EE, CS, RS > &m) const
Row times a conforming matrix, row=row*mat – use operator* instead.
Definition: Row.h:427
 
const E & operator[](int i) const
Definition: Row.h:449
 
Row(const Row< N, EE, SS > &vv)
Definition: Row.h:338
 
bool isNumericallyEqual(const Row< N, E2, CS2 > &r) const
Test whether this row vector is numerically equal to some other row with the same shape,...
Definition: Row.h:767
 
Row & operator=(const EE *p)
Definition: Row.h:382
 
Row< N, ENeg, STRIDE > TNeg
Definition: Row.h:182
 
Row & scalarMinusEqFromLeft(const EE &ee)
Definition: Row.h:592
 
static Row & updAs(ELT *p)
Recast a writable ordinary C++ array E[] to a writable Row<N,E,S>; assumes compatible length,...
Definition: Row.h:710
 
TStandard standardize() const
Definition: Row.h:246
 
Row< N, EStandard, 1 > TStandard
Definition: Row.h:200
 
const TPosTrans & positionalTranspose() const
Definition: Row.h:494
 
TWithoutNegator & updCastAwayNegatorIfAny()
Definition: Row.h:515
 
TReal & real()
Definition: Row.h:500
 
Row & scalarTimesEq(const EE &ee)
Definition: Row.h:594
 
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5)
Definition: Row.h:365
 
const THerm & transpose() const
Definition: Row.h:491
 
EScalar Scalar
Definition: Row.h:209
 
TNeg & operator-()
Definition: Row.h:484
 
Row< N, typename CNT< E >::template Result< EE >::Add > scalarAdd(const EE &e) const
Definition: Row.h:555
 
Row< N, EWithoutNegator, STRIDE > TWithoutNegator
Definition: Row.h:183
 
Row & scalarMinusEqFromLeft(int ee)
Definition: Row.h:610
 
ScalarNormSq scalarNormSqr() const
Definition: Row.h:222
 
E TCol
Definition: Row.h:194
 
Row(const E &e)
Definition: Row.h:343
 
bool isInf() const
Return true if any element of this Row contains a +Infinity or -Infinity somewhere but no element con...
Definition: Row.h:727
 
EScalarNormSq TSqTHerm
Definition: Row.h:205
 
Row(const Row< N, E, SS > &src)
Definition: Row.h:326
 
const TReal & real() const
Definition: Row.h:499
 
Row & scalarMinusEq(const EE &ee)
Definition: Row.h:590
 
TPosTrans & updPositionalTranspose()
Definition: Row.h:496
 
Row & operator-=(const EE &e)
Definition: Row.h:580
 
CNT< E >::template Result< EE >::Mul conformingMultiply(const Vec< N, EE, SS > &r) const
Same as dot product (s = row*col) – use operator* or dot() instead.
Definition: Row.h:420
 
Row< N, EReal, STRIDE *CNT< E >::RealStrideFactor > TReal
Definition: Row.h:186
 
Row & operator-=(const Row< N, EE, SS > &r)
Definition: Row.h:394
 
E & operator()(int i)
Definition: Row.h:452
 
Row & operator+=(const Row< N, negator< EE >, SS > &r)
Definition: Row.h:392
 
const Row< NN, ELT, STRIDE > & getSubRow(int j) const
Extract a const reference to a sub-Row with size known at compile time.
Definition: Row.h:631
 
Vec< N, EInvert, 1 > TInvert
Definition: Row.h:201
 
EStandard sum() const
Definition: Row.h:254
 
Row & scalarDivideEqFromLeft(int ee)
Definition: Row.h:612
 
EStdNumber StdNumber
Definition: Row.h:212
 
Row< N, typename CNT< E >::template Result< EE >::Dvd > elementwiseDivide(const Row< N, EE, SS > &r) const
Elementwise divide (Matlab .
Definition: Row.h:443
 
EPrecision Precision
Definition: Row.h:213
 
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8)
Definition: Row.h:374
 
static const Row & getAs(const ELT *p)
Recast an ordinary C++ array E[] to a const Row<N,E,S>; assumes compatible length,...
Definition: Row.h:707
 
TImag & imag()
Definition: Row.h:508
 
Row & operator=(const Row< N, EE, SS > &vv)
Definition: Row.h:386
 
static int ncol()
Definition: Row.h:218
 
Row< N, typename CNT< E >::template Result< EE >::Sub > conformingSubtract(const Row< N, EE, SS > &r) const
Vector subtraction – use operator- instead.
Definition: Row.h:412
 
Row(int i)
Definition: Row.h:352
 
static int nrow()
Definition: Row.h:217
 
const THerm & operator~() const
Definition: Row.h:485
 
Row(const Row &src)
Definition: Row.h:316
 
THerm & updTranspose()
Definition: Row.h:492
 
Row< N, ENormalize, 1 > TNormalize
Definition: Row.h:202
 
Row & scalarPlusEq(int ee)
Definition: Row.h:606
 
Row< N, typename CNT< E >::template Result< EE >::Sub > scalarSubtract(const EE &e) const
Definition: Row.h:563
 
Row(const E &e0, const E &e1)
Definition: Row.h:356
 
Vec< N, E, STRIDE > TPosTrans
Definition: Row.h:191
 
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4)
Definition: Row.h:362
 
bool isFinite() const
Return true if no element of this Row contains an Infinity or a NaN anywhere.
Definition: Row.h:742
 
Row< N, EImag, STRIDE *CNT< E >::RealStrideFactor > TImag
Definition: Row.h:188
 
static double getDefaultTolerance()
For approximate comparisons, the default tolerance to use for a vector is the same as its elements' d...
Definition: Row.h:751
 
Row(const E &e0, const E &e1, const E &e2, const E &e3)
Definition: Row.h:360
 
Row< NN, ELT, STRIDE > & updSubRow(int j)
Extract a writable reference to a sub-Row with size known at compile time.
Definition: Row.h:641
 
Row & operator-=(const Row< N, negator< EE >, SS > &r)
Definition: Row.h:396
 
Row< N-1, ELT, 1 > drop1(int p) const
Return a row one smaller than this one by dropping the element at the indicated position p.
Definition: Row.h:666
 
const TNeg & negate() const
Definition: Row.h:488
 
Row(const EE *p)
Definition: Row.h:380
 
Row< N, E, STRIDE > T
Definition: Row.h:181
 
Row & operator*=(const EE &e)
Definition: Row.h:581
 
Row(const Row< N, ENeg, SS > &src)
Definition: Row.h:332
 
SymMat< N, ESqHermT > TSqHermT
Definition: Row.h:204
 
ScalarNormSq normSqr() const
Definition: Row.h:454
 
static Row & updSubRow(Row< NN, ELT, STRIDE > &r, int j)
Extract a subvector of type Row from a longer one that has the same element type and stride,...
Definition: Row.h:658
 
Row & scalarMinusEq(int ee)
Definition: Row.h:607
 
static int size()
Definition: Row.h:216
 
Row< N, typename CNT< E >::template Result< EE >::Add > conformingAdd(const Row< N, EE, SS > &r) const
Vector addition – use operator+ instead.
Definition: Row.h:404
 
bool isNaN() const
Return true if any element of this Row contains a NaN anywhere.
Definition: Row.h:718
 
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7)
Definition: Row.h:371
 
Row & operator+=(const Row< N, EE, SS > &r)
Definition: Row.h:390
 
Row & scalarTimesEqFromLeft(const EE &ee)
Definition: Row.h:596
 
Row()
Definition: Row.h:307
 
Row< N, typename CNT< EE >::template Result< E >::Dvd > scalarDivideFromLeft(const EE &e) const
Definition: Row.h:548
 
E TElement
Definition: Row.h:192
 
TInvert invert() const
Definition: Row.h:480
 
TNeg & updNegate()
Definition: Row.h:489
 
Row & scalarEq(const EE &ee)
Definition: Row.h:586
 
EScalarNormSq ScalarNormSq
Definition: Row.h:214
 
const Row & operator+() const
Definition: Row.h:482
 
Row & scalarEq(int ee)
Definition: Row.h:605
 
Row(const ENeg &ne)
Definition: Row.h:347
 
E & operator[](int i)
Definition: Row.h:450
 
const TWithoutNegator & castAwayNegatorIfAny() const
Definition: Row.h:514
 
Row< N, typename CNT< E >::template Result< EE >::Mul > elementwiseMultiply(const Row< N, EE, SS > &r) const
Elementwise multiply (Matlab .
Definition: Row.h:435
 
@ IsULessScalar
Definition: Row.h:174
 
@ NPackedElements
Definition: Row.h:162
 
@ RealStrideFactor
Definition: Row.h:168
 
@ ArgDepth
Definition: Row.h:170
 
@ NActualScalars
Definition: Row.h:164
 
@ NActualElements
Definition: Row.h:163
 
@ RowSpacing
Definition: Row.h:165
 
@ SignInterpretation
Definition: Row.h:178
 
@ NRows
Definition: Row.h:160
 
@ ImagOffset
Definition: Row.h:167
 
@ IsPrecision
Definition: Row.h:177
 
@ IsNumber
Definition: Row.h:175
 
@ ColSpacing
Definition: Row.h:166
 
@ IsStdNumber
Definition: Row.h:176
 
@ NCols
Definition: Row.h:161
 
@ IsScalar
Definition: Row.h:173
 
Row< N, EComplex, STRIDE > TComplex
Definition: Row.h:189
 
const TImag & imag() const
Definition: Row.h:503
 
Row TRow
Definition: Row.h:193
 
void setToZero()
Set every scalar in this Row to zero.
Definition: Row.h:621
 
Row< N, typename CNT< EE >::template Result< E >::Sub > scalarSubtractFromLeft(const EE &e) const
Definition: Row.h:569
 
bool isNumericallyEqual(const ELT &e, double tol=getDefaultTolerance()) const
Test whether every element of this row vector is numerically equal to the given element,...
Definition: Row.h:777
 
Row & operator=(const Row &src)
Definition: Row.h:319
 
const TNeg & operator-() const
Definition: Row.h:483
 
static Row< N, ELT, 1 > getNaN()
Return a Row of the same length and element type as this one but with all elements set to NaN.
Definition: Row.h:715
 
TAbs abs() const
Definition: Row.h:240
 
Row & scalarPlusEq(const EE &ee)
Definition: Row.h:588
 
Row(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6)
Definition: Row.h:368
 
Row & scalarDivideEqFromLeft(const EE &ee)
Definition: Row.h:600
 
Row< N+1, ELT, 1 > insert1(int p, const EE &v) const
Return a row one larger than this one by inserting an element before the indicated one.
Definition: Row.h:693
 
ENumber Number
Definition: Row.h:211
 
CNT< ScalarNormSq >::TSqrt norm() const
Definition: Row.h:456
 
Vec< N, EHerm, STRIDE > THerm
Definition: Row.h:190
 
Row & scalarDivideEq(int ee)
Definition: Row.h:609
 
This is a small, fixed-size symmetric or Hermitian matrix designed for no-overhead inline computation...
Definition: SymMat.h:87
 
This is a fixed-length column vector designed for no-overhead inline computation.
Definition: Vec.h:184
 
SimTK::conjugate<R> should be instantiated only for float, double.
Definition: conjugate.h:178
 
negator<N>, where N is a number type (real, complex, conjugate), is represented in memory identically...
Definition: negator.h:75
 
NTraits< N >::StdNumber StdNumber
Definition: negator.h:107
 
void copy(Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2)
Definition: Row.h:105
 
void elementwiseDivide(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Dvd > &result)
Definition: Row.h:90
 
void conformingSubtract(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Sub > &result)
Definition: Row.h:60
 
void conformingAdd(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Add > &result)
Definition: Row.h:45
 
void elementwiseMultiply(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Mul > &result)
Definition: Row.h:75
 
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with o...
Definition: Assembler.h:37
 
Matrix_< typename CNT< E1 >::template Result< E2 >::Sub > operator-(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:584
 
Matrix_< E > operator/(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:613
 
std::ostream & operator<<(std::ostream &o, const ContactForce &f)
Definition: CompliantContactSubsystem.h:387
 
std::basic_istream< CHAR, TRAITS > & operator>>(std::basic_istream< CHAR, TRAITS > &is, conjugate< R > &c)
Definition: conjugate.h:505
 
Matrix_< typename CNT< E1 >::template Result< E2 >::Add > operator+(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:568
 
ELEM max(const VectorBase< ELEM > &v)
Definition: VectorMath.h:251
 
bool operator>(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:651
 
RowVectorBase< typename CNT< ELEM >::TAbs > abs(const RowVectorBase< ELEM > &v)
Definition: VectorMath.h:120
 
@ MAX_RESOLVED_DEPTH
Definition: CompositeNumericalTypes.h:120
 
bool operator>=(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:663
 
bool operator<(const Row< N, E1, S1 > &l, const Row< N, E2, S2 > &r)
bool = v1[i] < v2[i], for all elements i
Definition: Row.h:822
 
bool operator<=(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:657
 
Matrix_< E > operator*(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:605
 
bool operator==(const PhiMatrix &p1, const PhiMatrix &p2)
Definition: SpatialAlgebra.h:791
 
bool operator!=(const L &left, const R &right)
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:645
 
Row< N, typename CNT< E >::template Result< P >::Add, 1 > Add
Definition: Row.h:266
 
Row< N, typename CNT< E >::template Result< P >::Mul, 1 > Mul
Definition: Row.h:264
 
Row< N, typename CNT< E >::template Result< P >::Sub, 1 > Sub
Definition: Row.h:267
 
Row< N, typename CNT< E >::template Result< P >::Dvd, 1 > Dvd
Definition: Row.h:265
 
AddOp::Type Add
Definition: Row.h:292
 
MulCNTsNonConforming< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOpNonConforming
Definition: Row.h:280
 
AddCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > AddOp
Definition: Row.h:291
 
MulOp::Type Mul
Definition: Row.h:276
 
SubCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > SubOp
Definition: Row.h:296
 
MulOpNonConforming::Type MulNon
Definition: Row.h:281
 
DvdCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > DvdOp
Definition: Row.h:286
 
MulCNTs< 1, N, ArgDepth, Row, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOp
Definition: Row.h:275
 
DvdOp::Type Dvd
Definition: Row.h:287
 
SubOp::Type Sub
Definition: Row.h:297
 
Row< N, P > Type
Definition: Row.h:302