1 #ifndef SimTK_SIMMATRIX_NEGATOR_H_ 2 #define SimTK_SIMMATRIX_NEGATOR_H_ 63 template <
class T>
class CNT;
65 template <
class N>
class negator;
74 template <
class NUMBER>
155 SignInterpretation = -1
183 inline bool isNaN()
const;
186 inline bool isInf()
const;
229 template <
class P>
negator(
const std::complex<P>& t) {v = -N(t);}
237 {
return reinterpret_cast<const negator<N>&
>(val); }
243 operator N()
const {
return N(-v); }
245 template <
class P>
negator& operator =(
const P& t) { v = -t;
return *
this; }
256 { v = -t;
return *
this; }
258 { v += -t;
return *
this; }
260 { v -= -t;
return *
this; }
276 template <
class P>
inline bool 278 template <
class P>
inline bool 290 template <
class P>
inline bool 292 template <
class P>
inline bool 304 template <
class P>
inline bool 306 template <
class P>
inline bool 311 template <
class N>
inline bool 313 template <
class N>
inline bool 315 template <
class N>
inline bool 329 template <
class DEST,
class SRC>
static inline const DEST&
330 negRecast(
const SRC& s) {
return reinterpret_cast<const DEST&
>(s); }
335 {
return negRecast<typename negator<A>::template Result<B>::Add>(r-(-l));}
336 template <
class A,
class B>
inline typename CNT<A>::template Result<negator<B> >::Add
338 {
return negRecast<typename CNT<A>::template Result<negator<B> >::Add>(l-(-r));}
342 {
return negRecast<typename negator<A>::template Result<negator<B> >::Add>(r-(-l)); }
347 {
return negRecast<typename negator<A>::template Result<B>::Sub>(r+(-l));}
348 template <
class A,
class B>
inline typename CNT<A>::template Result<negator<B> >::Sub
350 {
return negRecast<typename CNT<A>::template Result<negator<B> >::Sub>(l+(-r));}
354 {
return negRecast<typename negator<A>::template Result<negator<B> >::Sub>(r+(-l));}
359 {
return negRecast<typename negator<A>::template Result<B>::Mul>((-l)*r);}
360 template <
class A,
class B>
inline typename CNT<A>::template Result<negator<B> >::Mul
362 {
return negRecast<typename CNT<A>::template Result<negator<B> >::Mul>(l*(-r));}
366 {
return negRecast<typename negator<A>::template Result<negator<B> >::Mul>((-l)*r);}
371 {
return negRecast<typename negator<A>::template Result<B>::Dvd>((-l)/r);}
372 template <
class A,
class B>
inline typename CNT<A>::template Result<negator<B> >::Dvd
374 {
return negRecast<typename CNT<A>::template Result<negator<B> >::Dvd>(l/(-r));}
378 {
return negRecast<typename negator<A>::template Result<negator<B> >::Dvd>((-l)/r);}
381 template <
class A,
class B>
inline bool 383 template <
class A,
class B>
inline bool 385 template <
class A,
class B>
inline bool 389 template <
class A,
class B>
inline bool 391 template <
class A,
class B>
inline bool 393 template <
class A,
class B>
inline bool 397 template <
class NUM,
class CHAR,
class TRAITS>
inline std::basic_istream<CHAR,TRAITS>&
399 NUM z; is >> z; nn=z;
402 template <
class NUM,
class CHAR,
class TRAITS>
inline std::basic_ostream<CHAR,TRAITS>&
403 operator<<(std::basic_ostream<CHAR,TRAITS>& os,
const negator<NUM>& nn) {
404 return os << NUM(nn);
409 #endif //SimTK_SIMMATRIX_NEGATOR_H_ Matrix_< E > operator/(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:613
TImag & imag()
Definition: negator.h:163
#define SimTK_SimTKCOMMON_EXPORT
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:218
NUMBER TWithoutNegator
Definition: negator.h:85
negator & operator/=(const P &t)
Definition: negator.h:249
negator< N > TElement
Definition: negator.h:93
PAdd Add
Definition: negator.h:130
negator< N > TCol
Definition: negator.h:95
CNT< PDvd >::TNeg Dvd
Definition: negator.h:129
static negator< N > getInfinity()
Definition: negator.h:178
negator< N > ULessScalar
Definition: negator.h:105
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with o...
Definition: Assembler.h:37
NTraits< N >::StdNumber StdNumber
Definition: negator.h:107
SimTK::conjugate<R> should be instantiated only for float, double, long double.
Definition: String.h:45
negator< N > * updData()
Definition: negator.h:158
Matrix_< typename CNT< E1 >::template Result< E2 >::Sub > operator-(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:584
negator(int t)
Definition: negator.h:222
TReal & real()
Definition: negator.h:161
negator(const long double &t)
Definition: negator.h:225
const TImag & imag() const
Definition: negator.h:162
NUMBER TNeg
Definition: negator.h:84
std::basic_istream< CHAR, TRAITS > & operator>>(std::basic_istream< CHAR, TRAITS > &is, conjugate< R > &c)
Definition: conjugate.h:800
negator< N > TRow
Definition: negator.h:94
negator<N>, where N is a number type (real, complex, conjugate), is represented in memory identically...
Definition: String.h:44
NUMBER Number
Definition: negator.h:106
static negator< N > getNaN()
Definition: negator.h:177
bool operator==(const PhiMatrix &p1, const PhiMatrix &p2)
Definition: SpatialAlgebra.h:774
ScalarNormSq scalarNormSqr() const
Definition: negator.h:165
static bool isNumericallyEqual(const K &t1, const K2 &t2)
CNTs are expected to support an "==" operator for exact, bitwise equality.
Definition: CompositeNumericalTypes.h:264
negator(const std::complex< P > &t)
Definition: negator.h:229
NTraits< N >::ScalarNormSq ScalarNormSq
Definition: negator.h:109
bool isFinite(const negator< float > &x)
Definition: negator.h:287
Definition: CompositeNumericalTypes.h:116
CNT< NImag >::TNeg TImag
Definition: negator.h:87
bool isInf() const
Returns true if the negated value contains an Inf or -Inf and does not contain a NaN.
Definition: negator.h:316
NTraits< N >::TSqHermT TSqHermT
Definition: negator.h:91
TNormalize normalize() const
Definition: negator.h:169
Matrix_< E > operator*(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:605
static const DEST & negRecast(const SRC &s)
Definition: negator.h:330
CNT< NHerm >::TNeg THerm
Definition: negator.h:89
const negator< N > * getData() const
Definition: negator.h:157
negator & operator+=(const P &t)
Definition: negator.h:246
bool isNaN() const
Returns true if the negated value contains a NaN.
Definition: negator.h:314
const TReal & real() const
Definition: negator.h:160
negator< N > TPosTrans
Definition: negator.h:90
bool isNumericallyEqual(const negator< N2 > &t2) const
In this partial specialization we know that both types have negators so we can just compare the under...
Definition: negator.h:198
NTraits< N >::TAbs TAbs
Definition: negator.h:98
negator()
Definition: negator.h:211
Definition: negator.h:135
CNT< NReal >::TNeg TReal
Definition: negator.h:86
const float & real(const conjugate< float > &c)
Definition: conjugate.h:771
negator & operator*=(const P &t)
Definition: negator.h:248
bool isNumericallyEqual(const T2 &t2) const
In the generic case we'll perform the negation here to get a number, and then delegate to the other t...
Definition: negator.h:192
RowVectorBase< typename CNT< ELEM >::TAbs > abs(const RowVectorBase< ELEM > &v)
Definition: VectorMath.h:120
bool isNaN(const negator< float > &x)
Definition: negator.h:273
bool operator!=(const conjugate< R > &a, const float &b)
Definition: conjugate.h:859
negator(const negator &n)
Definition: negator.h:216
negator< N > Scalar
Definition: negator.h:104
Definition: negator.h:119
Specialized information about Composite Numerical Types which allows us to define appropriate templat...
Definition: CompositeNumericalTypes.h:136
bool isNumericallyEqual(const negator< N2 > &t2, double tol) const
This is the partially specialized case again (see above) but with an explicitly-provided tolerance...
Definition: negator.h:207
bool isInf(const negator< float > &x)
Definition: negator.h:301
NTraits< N >::TStandard TNormalize
Definition: negator.h:101
const N & operator-() const
Definition: negator.h:239
static const negator< N > & recast(const N &val)
Definition: negator.h:236
K::TNeg TNeg
Definition: CompositeNumericalTypes.h:139
CNT< NInvert >::TNeg TInvert
Definition: negator.h:100
Matrix_< typename CNT< E1 >::template Result< E2 >::Add > operator+(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:568
CNT< PMul >::TNeg Mul
Definition: negator.h:128
NTraits< N >::TStandard TStandard
Definition: negator.h:99
negator & operator+=(const negator< NN > &t)
Definition: negator.h:257
NTraits< N >::TSqTHerm TSqTHerm
Definition: negator.h:92
negator(const float &t)
Definition: negator.h:223
const negator< float > & imag(const conjugate< float > &c)
Definition: conjugate.h:772
CNT< NComplex >::TNeg TComplex
Definition: negator.h:88
N operator+() const
Definition: negator.h:241
TStandard standardize() const
Definition: negator.h:168
bool isFinite() const
Returns true if the negated value is finite (i.e., not NaN or Inf).
Definition: negator.h:312
TInvert invert() const
Definition: negator.h:175
negator(const double &t)
Definition: negator.h:224
CNT< PSub >::TNeg Sub
Definition: negator.h:131
TAbs abs() const
Definition: negator.h:167
bool isNumericallyEqual(const T2 &t2, double tol) const
This is the generic case (see above) but with an explicitly-provided tolerance.
Definition: negator.h:202
static double getDefaultTolerance()
Definition: negator.h:188
negator & operator-=(const P &t)
Definition: negator.h:247
TSqrt sqrt() const
Definition: negator.h:166
negator< N > T
Definition: negator.h:83
N & operator-()
Definition: negator.h:240
NTraits< N >::Precision Precision
Definition: negator.h:108
negator & operator-=(const negator< NN > &t)
Definition: negator.h:259
negator(const conjugate< P > &t)
Definition: negator.h:230
bool isNumericallyEqual(const float &a, const float &b, double tol=RTraits< float >::getDefaultTolerance())
Compare two floats for approximate equality.
Definition: NTraits.h:313
NTraits< N >::TSqrt TSqrt
Definition: negator.h:97
negator & operator=(const negator &n)
Definition: negator.h:217
P Type
Definition: negator.h:136