1 #ifndef SimTK_SIMMATRIX_SMALLMATRIX_VEC_H_     2 #define SimTK_SIMMATRIX_SMALLMATRIX_VEC_H_    46 template <
class E1, 
int S1, 
class E2, 
int S2> 
void    48               Vec<1,
typename CNT<E1>::template Result<E2>::Add>& result) {
    49     result[0] = r1[0] + r2[0];
    51 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void    53               Vec<N,
typename CNT<E1>::template Result<E2>::Add>& result) {
    55                   reinterpret_cast<const Vec<N-1,E2,S2
>&>(r2), 
    56                   reinterpret_cast<Vec<N-1,typename CNT<E1>::
    57                               template Result<E2>::Add
>&>(result));
    58     result[N-1] = r1[N-1] + r2[N-1];
    61 template <
class E1, 
int S1, 
class E2, 
int S2> 
void    63                    Vec<1,
typename CNT<E1>::template Result<E2>::Sub>& result) {
    64     result[0] = r1[0] - r2[0];
    66 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void    68                    Vec<N,
typename CNT<E1>::template Result<E2>::Sub>& result) {
    70                        reinterpret_cast<const Vec<N-1,E2,S2
>&>(r2), 
    71                        reinterpret_cast<Vec<N-1,typename CNT<E1>::
    72                                    template Result<E2>::Sub
>&>(result));
    73     result[N-1] = r1[N-1] - r2[N-1];
    76 template <
class E1, 
int S1, 
class E2, 
int S2> 
void    78               Vec<1,
typename CNT<E1>::template Result<E2>::Mul>& result) {
    79     result[0] = r1[0] * r2[0];
    81 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void    83               Vec<N,
typename CNT<E1>::template Result<E2>::Mul>& result) {
    85                         reinterpret_cast<const Vec<N-1,E2,S2
>&>(r2), 
    86                         reinterpret_cast<Vec<N-1,typename CNT<E1>::
    87                                     template Result<E2>::Mul
>&>(result));
    88     result[N-1] = r1[N-1] * r2[N-1];
    91 template <
class E1, 
int S1, 
class E2, 
int S2> 
void    93               Vec<1,
typename CNT<E1>::template Result<E2>::Dvd>& result) {
    94     result[0] = r1[0] / r2[0];
    96 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void    98               Vec<N,
typename CNT<E1>::template Result<E2>::Dvd>& result) {
   100                       reinterpret_cast<const Vec<N-1,E2,S2
>&>(r2), 
   101                       reinterpret_cast<Vec<N-1,typename CNT<E1>::
   102                                   template Result<E2>::Dvd
>&>(result));
   103     result[N-1] = r1[N-1] / r2[N-1];
   106 template <
class E1, 
int S1, 
class E2, 
int S2> 
void   107 copy(Vec<1,E1,S1>& r1, 
const Vec<1,E2,S2>& r2) {
   110 template <
int N, 
class E1, 
int S1, 
class E2, 
int S2> 
void   111 copy(Vec<N,E1,S1>& r1, 
const Vec<N,E2,S2>& r2) {
   112     copy(
reinterpret_cast<Vec<N-1,E1,S1
>&>(r1), 
   113          reinterpret_cast<const Vec<N-1,E2,S2
>&>(r2));
   183 template <
int M, 
class ELT, 
int STRIDE>
   241         NActualElements     = M * STRIDE,   
   244         ColSpacing          = NActualElements,
   246         RealStrideFactor    = 1, 
   316     static int size() { 
return M; }
   318     static int nrow() { 
return M; }
   320     static int ncol() { 
return 1; }
   327         for(
int i=0;i<M;++i) sum += CNT<E>::scalarNormSqr(d[i*STRIDE]);
   337         for(
int i=0;i<M;++i) vsqrt[i] = CNT<E>::sqrt(d[i*STRIDE]);
   357         for(
int i=0;i<M;++i) vstd[i] = CNT<E>::standardize(d[i*STRIDE]);
   366         for (
int i=0;i<M;++i) sum += d[i*STRIDE];
   385         typedef MulCNTs<M,1,ArgDepth,
Vec,ColSpacing,RowSpacing,
   388         typedef typename MulOp::Type 
Mul;
   390         typedef MulCNTsNonConforming<M,1,ArgDepth,Vec,ColSpacing,RowSpacing,
   391             CNT<P>::NRows, CNT<P>::NCols, CNT<P>::ArgDepth,
   393         typedef typename MulOpNonConforming::Type 
MulNon;
   395         typedef DvdCNTs<M,1,ArgDepth,Vec,ColSpacing,RowSpacing,
   396             CNT<P>::NRows, CNT<P>::NCols, CNT<P>::ArgDepth,
   398         typedef typename DvdOp::Type 
Dvd;
   400         typedef AddCNTs<M,1,ArgDepth,Vec,ColSpacing,RowSpacing,
   401             CNT<P>::NRows, CNT<P>::NCols, CNT<P>::ArgDepth,
   403         typedef typename AddOp::Type 
Add;
   405         typedef SubCNTs<M,1,ArgDepth,Vec,ColSpacing,RowSpacing,
   406             CNT<P>::NRows, CNT<P>::NCols, CNT<P>::ArgDepth,
   408         typedef typename SubOp::Type 
Sub;
   468     explicit Vec(
const E& e) {
for (
int i=0;i<M;++i) d[i*STRIDE]=e;}
   474     explicit Vec(
const ENeg& ne) {
   476         for (
int i=0;i<M;++i) d[i*STRIDE]=e;
   483     explicit Vec(
int i) {
new (
this) 
Vec(
E(Precision(i)));}
   488     Vec(
const E& e0,
const E& e1)
   489       { assert(M==2);(*this)[0]=e0;(*this)[1]=e1; }
   490     Vec(
const E& e0,
const E& e1,
const E& e2)
   491       { assert(M==3);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2; }
   492     Vec(
const E& e0,
const E& e1,
const E& e2,
const E& e3)
   493       { assert(M==4);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;(*this)[3]=e3; }
   494     Vec(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4)
   495       { assert(M==5);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
   496         (*this)[3]=e3;(*this)[4]=e4; }
   497     Vec(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5)
   498       { assert(M==6);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
   499         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5; }
   500     Vec(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5, 
const E& e6)
   501       { assert(M==7);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
   502         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6; }
   503     Vec(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5, 
const E& e6, 
const E& e7)
   504       { assert(M==8);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
   505         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6;(*this)[7]=e7; }
   506     Vec(
const E& e0,
const E& e1,
const E& e2,
const E& e3,
const E& e4,
const E& e5, 
const E& e6, 
const E& e7, 
const E& e8)
   507       { assert(M==9);(*this)[0]=e0;(*this)[1]=e1;(*this)[2]=e2;
   508         (*this)[3]=e3;(*this)[4]=e4;(*this)[5]=e5;(*this)[6]=e6;(*this)[7]=e7;(*this)[8]=e8; }
   514     template <
class EE> 
explicit Vec(
const EE* p)
   515     {   assert(p); 
for(
int i=0;i<M;++i) d[i*STRIDE]=p[i]; }
   522     {   assert(p); 
for(
int i=0;i<M;++i) d[i*STRIDE]=p[i]; 
return *
this; }
   532     {   
for(
int i=0;i<M;++i) d[i*STRIDE] += r[i]; 
return *
this; }
   537     {   
for(
int i=0;i<M;++i) d[i*STRIDE] -= -(r[i]); 
return *
this; }
   542     {   
for(
int i=0;i<M;++i) d[i*STRIDE] -= r[i]; 
return *
this; }
   547     {   
for(
int i=0;i<M;++i) d[i*STRIDE] += -(r[i]); 
return *
this; }
   572         for (
int j=0;j<M;++j) result(j) = scalarMultiply(r(j));
   595     {   assert(0 <= i && i < M); 
return d[i*STRIDE]; }
   602     E& 
operator[](
int i) {assert(0 <= i && i < M); 
return d[i*STRIDE];}
   606     ScalarNormSq 
normSqr()
 const { 
return scalarNormSqr(); }
   623             return castAwayNegatorIfAny() / (SignInterpretation*
norm());
   625             TNormalize elementwiseNormalized;
   626             for (
int i=0; i<M; ++i) 
   628             return elementwiseNormalized;
   633     TInvert 
invert()
 const {assert(
false); 
return TInvert();} 
   654     const TNeg&  
negate()
 const { 
return *
reinterpret_cast<const TNeg*
>(
this); }
   657     TNeg&        
updNegate()    { 
return *
reinterpret_cast<      TNeg*
>(
this); }
   660     const THerm& 
transpose()
    const { 
return *
reinterpret_cast<const THerm*
>(
this); }
   670         { 
return *
reinterpret_cast<const TPosTrans*
>(
this); }
   673         { 
return *
reinterpret_cast<TPosTrans*
>(
this); }
   691         const int offs = ImagOffset;
   692         const EImag* p = 
reinterpret_cast<const EImag*
>(
this);
   693         return *
reinterpret_cast<const TImag*
>(p+offs);
   698         const int offs = ImagOffset;
   699         EImag* p = 
reinterpret_cast<EImag*
>(
this);
   700         return *
reinterpret_cast<TImag*
>(p+offs);
   707     {   
return *
reinterpret_cast<const TWithoutNegator*
>(
this); }
   711     {   
return *
reinterpret_cast<TWithoutNegator*
>(
this); }
   724         for (
int i=0; i<M; ++i) result[i] = (*
this)[i] * e;
   730         for (
int i=0; i<M; ++i) result[i] = e * (*
this)[i];
   739         for (
int i=0; i<M; ++i) result[i] = (*
this)[i] / e;
   745         for (
int i=0; i<M; ++i) result[i] = e / (*
this)[i];
   752         for (
int i=0; i<M; ++i) result[i] = (*
this)[i] + e;
   760         for (
int i=0; i<M; ++i) result[i] = (*
this)[i] - e;
   766         for (
int i=0; i<M; ++i) result[i] = e - (*
this)[i];
   773     template <
class EE> 
Vec& operator =(
const EE& e) {
return scalarEq(e);}
   777     template <
class EE> 
Vec& 
operator/=(
const EE& e) {
return scalarDivideEq(e);}
   782       { 
for(
int i=0;i<M;++i) d[i*STRIDE] = ee; 
return *
this; }
   784       { 
for(
int i=0;i<M;++i) d[i*STRIDE] += ee; 
return *
this; }
   786       { 
for(
int i=0;i<M;++i) d[i*STRIDE] -= ee; 
return *
this; }
   788       { 
for(
int i=0;i<M;++i) d[i*STRIDE] = ee - d[i*STRIDE]; 
return *
this; }
   790       { 
for(
int i=0;i<M;++i) d[i*STRIDE] *= ee; 
return *
this; }
   792       { 
for(
int i=0;i<M;++i) d[i*STRIDE] = ee * d[i*STRIDE]; 
return *
this; }
   794       { 
for(
int i=0;i<M;++i) d[i*STRIDE] /= ee; 
return *
this; }
   796       { 
for(
int i=0;i<M;++i) d[i*STRIDE] = ee / d[i*STRIDE]; 
return *
this; }
   826         assert(0 <= i && i + MM <= M);
   836         assert(0 <= i && i + MM <= M);
   846         assert(0 <= i && i + M <= MM);
   854         assert(0 <= i && i + M <= MM);
   862         assert(0 <= p && p < M);
   865         for (
int i=0; i<M-1; ++i, ++nxt) {
   867             out[i] = (*this)[nxt];
   889         assert(0 <= p && p <= M);
   890         if (p==M) 
return append1(v);
   893         for (
int i=0; i<M; ++i, ++nxt) {
   894             if (i==p) out[nxt++] = v;
   895             out[nxt] = (*this)[i];
   903     {   
return *
reinterpret_cast<const Vec*
>(p); }
   907     {   
return *
reinterpret_cast<Vec*
>(p); }
   917         for (
int i=0; i<M; ++i)
   926         bool seenInf = 
false;
   927         for (
int i=0; i<M; ++i) {
   928             const ELT& e = (*this)[i];
   941         for (
int i=0; i<M; ++i)
   953     template <
class E2, 
int RS2>
   955         for (
int i=0; i<M; ++i)
   964     template <
class E2, 
int RS2>
   966         const double tol = 
std::max(getDefaultTolerance(),v.getDefaultTolerance());
   976         double     tol = getDefaultTolerance()) 
const    978         for (
int i=0; i<M; ++i)
   987         std::stringstream stream;
   993     void set(
int i, 
const E& value)  
   994     {   (*this)[i] = value; }
   997     const E& 
get(
int i) 
const    998     {   
return operator[](i); }
  1003     ELT d[NActualElements];    
  1012 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline  1016         ::AddOp::perform(l,r);
  1020 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline  1024         ::SubOp::perform(l,r);
  1028 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool  1030 {   
for (
int i=0; i < M; ++i) 
if (l[i] != r[i]) 
return false;
  1033 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool  1037 template <
int M, 
class E1, 
int S1, 
class E2> 
inline bool  1039 {   
for (
int i=0; i < M; ++i) 
if (v[i] != e) 
return false;
  1042 template <
int M, 
class E1, 
int S1, 
class E2> 
inline bool  1046 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool  1048 {   
for (
int i=0; i < M; ++i) if (l[i] >= r[i]) 
return false;
  1051 template <
int M, 
class E1, 
int S1, 
class E2> 
inline bool  1052 operator<(const Vec<M,E1,S1>& v, 
const E2& e) 
  1053 {   
for (
int i=0; i < M; ++i) if (v[i] >= e) 
return false;
  1057 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool  1059 {   
for (
int i=0; i < M; ++i) 
if (l[i] <= r[i]) 
return false;
  1062 template <
int M, 
class E1, 
int S1, 
class E2> 
inline bool  1064 {   
for (
int i=0; i < M; ++i) 
if (v[i] <= e) 
return false;
  1069 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool  1071 {   
for (
int i=0; i < M; ++i) if (l[i] > r[i]) 
return false;
  1075 template <
int M, 
class E1, 
int S1, 
class E2> 
inline bool  1076 operator<=(const Vec<M,E1,S1>& v, 
const E2& e) 
  1077 {   
for (
int i=0; i < M; ++i) if (v[i] > e) 
return false;
  1082 template <
int M, 
class E1, 
int S1, 
class E2, 
int S2> 
inline bool  1084 {   
for (
int i=0; i < M; ++i) 
if (l[i] < r[i]) 
return false;
  1088 template <
int M, 
class E1, 
int S1, 
class E2> 
inline bool  1090 {   
for (
int i=0; i < M; ++i) 
if (v[i] < e) 
return false;
  1104 template <
int M, 
class E, 
int S> 
inline  1108 template <
int M, 
class E, 
int S> 
inline  1112 template <
int M, 
class E, 
int S> 
inline  1116 template <
int M, 
class E, 
int S> 
inline  1120 template <
int M, 
class E, 
int S> 
inline  1124 template <
int M, 
class E, 
int S> 
inline  1129 template <
int M, 
class E, 
int S> 
inline  1132 template <
int M, 
class E, 
int S> 
inline  1139 template <
int M, 
class E, 
int S, 
class R> 
inline  1143 template <
int M, 
class E, 
int S, 
class R> 
inline  1148 template <
int M, 
class E, 
int S, 
class R> 
inline  1151 template <
int M, 
class E, 
int S, 
class R> 
inline  1156 template <
int M, 
class E, 
int S, 
class R> 
inline  1159 template <
int M, 
class E, 
int S, 
class R> 
inline  1169 template <
int M, 
class E, 
int S> 
inline  1173 template <
int M, 
class E, 
int S> 
inline  1178 template <
int M, 
class E, 
int S> 
inline  1182 template <
int M, 
class E, 
int S> 
inline  1187 template <
int M, 
class E, 
int S> 
inline  1191 template <
int M, 
class E, 
int S> 
inline  1197 template <
int M, 
class E, 
int S> 
inline  1200 template <
int M, 
class E, 
int S> 
inline  1208 template <
int M, 
class E, 
int S, 
class R> 
inline  1212 template <
int M, 
class E, 
int S, 
class R> 
inline  1218 template <
int M, 
class E, 
int S, 
class R> 
inline  1221 template <
int M, 
class E, 
int S, 
class R> 
inline  1226 template <
int M, 
class E, 
int S, 
class R> 
inline  1229 template <
int M, 
class E, 
int S, 
class R> 
inline  1241 template <
int M, 
class E, 
int S> 
inline  1245 template <
int M, 
class E, 
int S> 
inline  1249 template <
int M, 
class E, 
int S> 
inline  1253 template <
int M, 
class E, 
int S> 
inline  1257 template <
int M, 
class E, 
int S> 
inline  1261 template <
int M, 
class E, 
int S> 
inline  1266 template <
int M, 
class E, 
int S> 
inline  1269 template <
int M, 
class E, 
int S> 
inline  1276 template <
int M, 
class E, 
int S, 
class R> 
inline  1280 template <
int M, 
class E, 
int S, 
class R> 
inline  1285 template <
int M, 
class E, 
int S, 
class R> 
inline  1288 template <
int M, 
class E, 
int S, 
class R> 
inline  1293 template <
int M, 
class E, 
int S, 
class R> 
inline  1296 template <
int M, 
class E, 
int S, 
class R> 
inline  1303 template <
int M, 
class E, 
int S> 
inline  1307 template <
int M, 
class E, 
int S> 
inline  1312 template <
int M, 
class E, 
int S> 
inline  1316 template <
int M, 
class E, 
int S> 
inline  1321 template <
int M, 
class E, 
int S> 
inline  1325 template <
int M, 
class E, 
int S> 
inline  1331 template <
int M, 
class E, 
int S> 
inline  1334 template <
int M, 
class E, 
int S> 
inline  1342 template <
int M, 
class E, 
int S, 
class R> 
inline  1346 template <
int M, 
class E, 
int S, 
class R> 
inline  1352 template <
int M, 
class E, 
int S, 
class R> 
inline  1355 template <
int M, 
class E, 
int S, 
class R> 
inline  1360 template <
int M, 
class E, 
int S, 
class R> 
inline  1363 template <
int M, 
class E, 
int S, 
class R> 
inline  1368 template <
int M, 
class E, 
int S, 
class CHAR, 
class TRAITS> 
inline  1369 std::basic_ostream<CHAR,TRAITS>&
  1370 operator<<(std::basic_ostream<CHAR,TRAITS>& o, 
const Vec<M,E,S>& v) {
  1371     o << 
"~[" << v[0]; 
for(
int i=1;i<M;++i) o<<
','<<v[i]; o<<
']'; 
return o;
  1376 template <
int M, 
class E, 
int S, 
class CHAR, 
class TRAITS> 
inline  1377 std::basic_istream<CHAR,TRAITS>&
  1380     is >> tilde; 
if (is.fail()) 
return is;
  1381     if (tilde != CHAR(
'~')) {
  1383         is.unget(); 
if (is.fail()) 
return is;
  1386     CHAR openBracket, closeBracket;
  1387     is >> openBracket; 
if (is.fail()) 
return is;
  1388     if (openBracket==CHAR(
'('))
  1389         closeBracket = CHAR(
')');
  1390     else if (openBracket==CHAR(
'['))
  1391         closeBracket = CHAR(
']');
  1393         closeBracket = CHAR(0);
  1394         is.unget(); 
if (is.fail()) 
return is;
  1399     if (tilde != CHAR(0) && closeBracket == CHAR(0)) {
  1400         is.setstate( std::ios::failbit );
  1404     for (
int i=0; i < M; ++i) {
  1406         if (is.fail()) 
return is;
  1408             CHAR c; is >> c; 
if (is.fail()) 
return is;
  1409             if (c != 
',') is.unget();
  1410             if (is.fail()) 
return is;
  1416     if (closeBracket != CHAR(0)) {
  1417         CHAR closer; is >> closer; 
if (is.fail()) 
return is;
  1418         if (closer != closeBracket) {
  1419             is.unget(); 
if (is.fail()) 
return is;
  1420             is.setstate( std::ios::failbit );
  1430 #endif //SimTK_SIMMATRIX_SMALLMATRIX_VEC_H_ Matrix_< E > operator/(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:613
 
TImag & imag()
Recast to show only the imaginary portion of this Vec and return a writable reference. 
Definition: Vec.h:697
 
PhiMatrixTranspose transpose(const PhiMatrix &phi)
Definition: SpatialAlgebra.h:720
 
std::string toString() const 
Print Vec into a string and return it. 
Definition: Vec.h:986
 
bool isFinite() const 
Return true if no element of this Vec contains an Infinity or a NaN anywhere. 
Definition: Vec.h:940
 
TAbs abs() const 
Elementwise absolute value; that is, the return value has the same dimension as this Vec but with eac...
Definition: Vec.h:345
 
CNT< E >::TSqHermT ESqHermT
Type of the expression ~E*E (default vector and matrix square; symmetric). 
Definition: Vec.h:212
 
K::ScalarNormSq ScalarNormSq
Definition: CompositeNumericalTypes.h:166
 
SubOp::Type Sub
Definition: Vec.h:408
 
static Vec< M, ELT, 1 > getNaN()
Return a Vec of the same length and element type as this one but with all elements set to NaN...
Definition: Vec.h:913
 
K::ULessScalar ULessScalar
Definition: CompositeNumericalTypes.h:161
 
TNeg & operator-()
Recast to negated type and return a writable reference; writing to this will cause the negated result...
Definition: Vec.h:643
 
static int size()
The number of elements in this Vec (note that stride does not affect this number.) ...
Definition: Vec.h:316
 
Vec(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7, const E &e8)
Definition: Vec.h:506
 
Vec< M, P > Type
Definition: Vec.h:417
 
K::TReal TReal
Definition: CompositeNumericalTypes.h:141
 
CNT< E >::TSqrt ESqrt
Type required to hold the result of sqrt(E). 
Definition: Vec.h:216
 
const TImag & imag() const 
Return a reference to the imaginary portion of this Vec if it has complex elements; otherwise the typ...
Definition: Vec.h:690
 
ScalarNormSq scalarNormSqr() const 
Scalar norm square is sum( conjugate squares of all underlying scalars ), where conjugate square of s...
Definition: Vec.h:325
 
Vec< M, typename CNT< E >::template Result< EE >::Dvd > elementwiseDivide(const Vec< M, EE, SS > &r) const 
Elementwise divide (Matlab " ./ " operator). 
Definition: Vec.h:585
 
This is a small, fixed-size symmetric or Hermitian matrix designed for no-overhead inline computation...
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:608
 
const E & operator[](int i) const 
Select an element of this Vec and return a const reference to it. 
Definition: Vec.h:594
 
SymMat< M, ESqTHerm > TSqTHerm
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:302
 
Vec< M, typename CNT< EE >::template Result< E >::Sub > scalarSubtractFromLeft(const EE &e) const 
Definition: Vec.h:764
 
Vec & scalarEq(const EE &ee)
Definition: Vec.h:781
 
CNT< E >::TImag EImag
Type showing the imaginary part of an element of this Vec as real, if elements are complex; otherwise...
Definition: Vec.h:202
 
MulOp::Type Mul
Definition: Vec.h:388
 
CNT< E >::TReal EReal
Type showing just the real part of an element of this Vec if elements are complex; otherwise just the...
Definition: Vec.h:198
 
TSqrt sqrt() const 
Elementwise square root; that is, the return value has the same length as this Vec but with each elem...
Definition: Vec.h:335
 
Vec & scalarTimesEq(const EE &ee)
Definition: Vec.h:789
 
Vec & scalarTimesEqFromLeft(int ee)
Definition: Vec.h:805
 
This is the top-level SimTK namespace into which all SimTK names are placed to avoid collision with o...
Definition: Assembler.h:37
 
bool isNaN() const 
Return true if any element of this Vec contains a NaN anywhere. 
Definition: Vec.h:916
 
NTraits< N >::StdNumber StdNumber
Definition: negator.h:107
 
SimTK::conjugate<R> should be instantiated only for float, double, long double. 
Definition: String.h:45
 
K::TSqrt TSqrt
Definition: CompositeNumericalTypes.h:154
 
Vec< M-1, ELT, 1 > drop1(int p) const 
Return a vector one smaller than this one by dropping the element at the indicated position p...
Definition: Vec.h:861
 
TWithoutNegator & updCastAwayNegatorIfAny()
Recast to remove negators from this Vec's type if present and return a writable reference. 
Definition: Vec.h:710
 
Vec(const E &e)
Construction from a single value of this Vec's element type assigns that value to each element...
Definition: Vec.h:468
 
TInvert invert() const 
This method is not supported for Vec objects. 
Definition: Vec.h:633
 
static TSqrt sqrt(const K &t)
Definition: CompositeNumericalTypes.h:239
 
static Vec & updAs(ELT *p)
Recast a writable ordinary C++ array E[] to a writable Vec<M,E,S>; assumes compatible length...
Definition: Vec.h:906
 
Vec< M, ESqrt, 1 > TSqrt
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:295
 
Vec & operator=(const EE *p)
Assignment to a pointer to elements of any type EE assumes we're pointing at a C++ array of EE's of t...
Definition: Vec.h:521
 
TNeg & updNegate()
Non-operator version of unary negation; recasts and returns a writable reference. ...
Definition: Vec.h:657
 
K::Scalar Scalar
Definition: CompositeNumericalTypes.h:160
 
ESqHermT TSqHermT
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:301
 
Vec & operator+=(const EE &e)
Definition: Vec.h:774
 
CNT< E >::TNormalize ENormalize
Packed type that can hold the value returned from normalize(E). 
Definition: Vec.h:226
 
K::TNormalize TNormalize
Definition: CompositeNumericalTypes.h:158
 
Vec< M, typename CNT< EE >::template Result< E >::Mul > scalarMultiplyFromLeft(const EE &e) const 
Definition: Vec.h:728
 
Matrix_< typename CNT< E1 >::template Result< E2 >::Sub > operator-(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:584
 
E TElement
Element type of this Vec. 
Definition: Vec.h:287
 
Vec< M, typename CNT< E >::template Result< EE >::Mul > elementwiseMultiply(const Vec< M, EE, SS > &r) const 
Elementwise multiply (Matlab " .* " operator). 
Definition: Vec.h:578
 
Vec(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6)
Definition: Vec.h:500
 
static int nrow()
The number of rows in a Vec is the number of elements. 
Definition: Vec.h:318
 
E & operator[](int i)
Select an element of this Vec and return a writable reference to it. 
Definition: Vec.h:602
 
Vec(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5, const E &e6, const E &e7)
Definition: Vec.h:503
 
K::TImag TImag
Definition: CompositeNumericalTypes.h:142
 
CNT< E >::StdNumber EStdNumber
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:231
 
Vec(const E &e0, const E &e1)
Construct a Vec<2,E> from two elements of type E, etc. 
Definition: Vec.h:488
 
TStandard standardize() const 
Return a copy of this Vec but with the underlying scalar type converted (if necessary) to one of the ...
Definition: Vec.h:355
 
Vec< M, typename CNT< E >::template Result< P >::Mul, 1 > Mul
Definition: Vec.h:376
 
Vec & operator-=(const EE &e)
Definition: Vec.h:775
 
EStdNumber StdNumber
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:309
 
AddCNTs< M, 1, ArgDepth, Vec, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > AddOp
Definition: Vec.h:402
 
std::basic_istream< CHAR, TRAITS > & operator>>(std::basic_istream< CHAR, TRAITS > &is, conjugate< R > &c)
Definition: conjugate.h:800
 
Vec(const EE *p)
Construction from a pointer to elements of any type EE assumes we're pointing at a C++ array of EE's ...
Definition: Vec.h:514
 
Vec< M, EAbs, 1 > TAbs
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:296
 
negator<N>, where N is a number type (real, complex, conjugate), is represented in memory identically...
Definition: String.h:44
 
Definition: CompositeNumericalTypes.h:120
 
static double getDefaultTolerance()
Definition: CompositeNumericalTypes.h:269
 
CNT< E >::THerm EHerm
Type of the Hermitian transpose of an element of this Vec. 
Definition: Vec.h:207
 
Vec< M+1, ELT, 1 > insert1(int p, const EE &v) const 
Return a vector one larger than this one by inserting an element before the indicated one...
Definition: Vec.h:888
 
const TNeg & operator-() const 
Unary minus recasts this Vec to a type that has the opposite interpretation of the sign but is otherw...
Definition: Vec.h:640
 
SubCNTs< M, 1, ArgDepth, Vec, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > SubOp
Definition: Vec.h:407
 
TPosTrans & updPositionalTranspose()
Positional transpose returning a writable reference. 
Definition: Vec.h:672
 
Vec(const Vec &src)
Copy constructor copies the logically-included elements from the source Vec; gaps due to stride are n...
Definition: Vec.h:436
 
bool operator==(const PhiMatrix &p1, const PhiMatrix &p2)
Definition: SpatialAlgebra.h:774
 
CNT< E >::TStandard EStandard
Return type of standardize(E) method; a packed type that can hold the value of an element after elimi...
Definition: Vec.h:221
 
static TStandard standardize(const K &t)
Definition: CompositeNumericalTypes.h:241
 
Vec(const E &e0, const E &e1, const E &e2, const E &e3)
Definition: Vec.h:492
 
Vec< M, EReal, STRIDE *CNT< E >::RealStrideFactor > TReal
Type of this Vec cast to show only the real part of its element; this might affect the stride...
Definition: Vec.h:273
 
CNT< E >::Scalar EScalar
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:228
 
EPrecision Precision
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:310
 
CNT< E >::TPosTrans EPosTrans
Type of a positional transpose of an element of this Vec. 
Definition: Vec.h:209
 
CNT< E >::TSqTHerm ESqTHerm
Type of the expression E*~E ("row square"; symmetric). 
Definition: Vec.h:214
 
Vec< M, typename CNT< E >::template Result< P >::Add, 1 > Add
Definition: Vec.h:378
 
Vec< M, EStandard, 1 > TStandard
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:297
 
Vec & scalarMinusEqFromLeft(int ee)
Definition: Vec.h:804
 
Vec & scalarPlusEq(const EE &ee)
Definition: Vec.h:783
 
const E & operator()(int i) const 
Same as const operator[] above. 
Definition: Vec.h:597
 
Vec & operator+=(const Vec< M, negator< EE >, SS > &r)
Add in a conforming Vec, of any negated element type and stride, provided that the element types are ...
Definition: Vec.h:536
 
Vec< M, E, STRIDE > T
The type of this Vec. 
Definition: Vec.h:263
 
CNT< E >::ScalarNormSq EScalarNormSq
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:233
 
Mat< M, M, typename CNT< E >::template Result< EE >::Mul > conformingMultiply(const Row< M, EE, SS > &r) const 
Same as outer product (m = col*row) – use operator* or outer() instead. 
Definition: Vec.h:570
 
ELEM sum(const VectorBase< ELEM > &v)
Definition: VectorMath.h:147
 
K::TSqTHerm TSqTHerm
Definition: CompositeNumericalTypes.h:147
 
Vec(const Vec< M, ENeg, SS > &src)
This is an implicit conversion from a Vec of the same length and negated element type (possibly with ...
Definition: Vec.h:456
 
EStandard sum() const 
Sum just adds up all the elements into a single return element that is the same type as this Vec's el...
Definition: Vec.h:364
 
This is a fixed-length column vector designed for no-overhead inline computation. ...
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:605
 
const Vec & operator+() const 
Unary plus does nothing. 
Definition: Vec.h:636
 
Row< M, EInvert, 1 > TInvert
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:298
 
const TNeg & negate() const 
Non-operator version of unary negation; just a recast. 
Definition: Vec.h:654
 
Vec(const Vec< M, EE, SS > &src)
Construct a Vec from a Vec of the same length, with any stride. 
Definition: Vec.h:462
 
const TReal & real() const 
Return a reference to the real portion of this Vec if it has complex elements; otherwise the type doe...
Definition: Vec.h:679
 
const THerm & operator~() const 
The Hermitian transpose operator recasts this Vec to a type that specifies the opposite storage order...
Definition: Vec.h:647
 
Vec< M, typename CNT< E >::template Result< EE >::Mul > scalarMultiply(const EE &e) const 
Definition: Vec.h:722
 
static double getDefaultTolerance()
For approximate comparisions, the default tolerance to use for a vector is the same as its elements' ...
Definition: Vec.h:949
 
K::Precision Precision
Definition: CompositeNumericalTypes.h:164
 
Vec & scalarEq(int ee)
Definition: Vec.h:799
 
Row< M, EHerm, STRIDE > THerm
Type of this Vec after casting to its Hermitian transpose; that is, the Vec turns into a Row and each...
Definition: Vec.h:282
 
ENumber Number
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:308
 
void setToNaN()
Set every scalar in this Vec to NaN; this is the default initial value in Debug builds, but not in Release. 
Definition: Vec.h:810
 
Matrix_< E > operator*(const MatrixBase< E > &l, const typename CNT< E >::StdNumber &r)
Definition: BigMatrix.h:605
 
Vec< M, typename CNT< E >::template Result< EE >::Add > scalarAdd(const EE &e) const 
Definition: Vec.h:750
 
void setToZero()
Set every scalar in this Vec to zero. 
Definition: Vec.h:815
 
void elementwiseDivide(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Dvd > &result)
Definition: Row.h:90
 
K::TInvert TInvert
Definition: CompositeNumericalTypes.h:157
 
THerm & operator~()
Recast to Hermitian transposed type and return a writable reference; the effect is that writing to el...
Definition: Vec.h:651
 
bool isNumericallyEqual(const Vec< M, E2, RS2 > &v, double tol) const 
Test whether this vector is numerically equal to some other vector with the same shape, using a specified tolerance. 
Definition: Vec.h:954
 
Vec & operator=(const Vec &src)
Copy assignment operator copies the logically-included elements from the source Vec; gaps due to stri...
Definition: Vec.h:443
 
Vec(const E &e0, const E &e1, const E &e2)
Definition: Vec.h:490
 
MulOpNonConforming::Type MulNon
Definition: Vec.h:393
 
ELEM max(const VectorBase< ELEM > &v)
Definition: VectorMath.h:251
 
Vec & scalarMinusEq(int ee)
Definition: Vec.h:801
 
Shape-preserving element substitution (always packed). 
Definition: Vec.h:416
 
Vec< M, typename CNT< E >::template Result< EE >::Add > conformingAdd(const Vec< M, EE, SS > &r) const 
Vector addition – use operator+ instead. 
Definition: Vec.h:554
 
MulCNTsNonConforming< M, 1, ArgDepth, Vec, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOpNonConforming
Definition: Vec.h:392
 
TNormalize normalize() const 
If the elements of this Vec are scalars, the result is what you get by dividing each element by the n...
Definition: Vec.h:621
 
Vec & operator/=(const EE &e)
Definition: Vec.h:777
 
static const Vec & getSubVec(const Vec< MM, ELT, STRIDE > &v, int i)
Extract a subvector of type Vec from a longer one that has the same element type and stride...
Definition: Vec.h:845
 
bool operator>=(const Row< N, E1, S1 > &l, const Row< N, E2, S2 > &r)
bool = v1[i] >= v2[i], for all elements i This is not the same as !(v1<v2). 
Definition: Row.h:858
 
CNT< E >::TWithoutNegator EWithoutNegator
Element type, stripped of negator<> if it has one. 
Definition: Vec.h:195
 
CNT< E >::TComplex EComplex
Type that elements would have if complex, if E is currently real; otherwise just the element type E...
Definition: Vec.h:205
 
Vec(const ENeg &ne)
Construction from a single value of this Vec's negated element type assigns that value to each elemen...
Definition: Vec.h:474
 
K::TPosTrans TPosTrans
Definition: CompositeNumericalTypes.h:145
 
Vec & operator*=(const EE &e)
Definition: Vec.h:776
 
void elementwiseMultiply(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Mul > &result)
Definition: Row.h:75
 
float norm(const conjugate< float > &c)
Definition: conjugate.h:775
 
Vec< M, EImag, STRIDE *CNT< E >::RealStrideFactor > TImag
Type of this Vec cast to show only the imaginary part of its element; this might affect the stride...
Definition: Vec.h:277
 
TReal & real()
Recast to show only the real portion of this Vec and return a writable reference. ...
Definition: Vec.h:682
 
const TPosTrans & positionalTranspose() const 
Positional transpose turns this Vec into a Row but does not transpose the individual elements...
Definition: Vec.h:669
 
CNT< E >::TAbs EAbs
Type required to hold the result of abs(E). 
Definition: Vec.h:218
 
K::StdNumber StdNumber
Definition: CompositeNumericalTypes.h:163
 
RowVectorBase< typename CNT< ELEM >::TAbs > abs(const RowVectorBase< ELEM > &v)
Definition: VectorMath.h:120
 
Vec & scalarTimesEqFromLeft(const EE &ee)
Definition: Vec.h:791
 
bool operator!=(const conjugate< R > &a, const float &b)
Definition: conjugate.h:859
 
E TRow
Type of a row of this CNT object (for a Vec, just its element type). 
Definition: Vec.h:289
 
Specialized information about Composite Numerical Types which allows us to define appropriate templat...
Definition: CompositeNumericalTypes.h:136
 
Vec & scalarPlusEq(int ee)
Definition: Vec.h:800
 
THerm & updTranspose()
Non-operator version of Hermitian transpose; recasts and returns a writable reference. 
Definition: Vec.h:663
 
DvdCNTs< M, 1, ArgDepth, Vec, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > DvdOp
Definition: Vec.h:397
 
Vec & scalarDivideEq(int ee)
Definition: Vec.h:803
 
CNT< E >::Precision EPrecision
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:232
 
This is a fixed-length row vector designed for no-overhead inline computation. 
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:606
 
Vec & scalarMinusEqFromLeft(const EE &ee)
Definition: Vec.h:787
 
const Real E
e = Real(exp(1)) 
 
Mandatory first inclusion for any Simbody source or header file. 
 
Vec< M, ENormalize, 1 > TNormalize
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:299
 
E & operator()(int i)
Same as non-const operator[] above. 
Definition: Vec.h:604
 
Vec< M, typename CNT< E >::template Result< EE >::Sub > scalarSubtract(const EE &e) const 
Definition: Vec.h:758
 
K::TNeg TNeg
Definition: CompositeNumericalTypes.h:139
 
K::TStandard TStandard
Definition: CompositeNumericalTypes.h:156
 
void copy(Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2)
Definition: Row.h:105
 
ScalarNormSq normSqr() const 
Definition: Vec.h:606
 
K::TWithoutNegator TWithoutNegator
Definition: CompositeNumericalTypes.h:140
 
Vec & operator=(const Vec< M, EE, SS > &vv)
Assignment to a conforming Vec, of any element type and stride, provided that the element types are a...
Definition: Vec.h:526
 
void conformingSubtract(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Sub > &result)
Definition: Row.h:60
 
const THerm & transpose() const 
Non-operator version of Hermitian transpose; just a recast. 
Definition: Vec.h:660
 
CNT< ScalarNormSq >::TSqrt norm() const 
Definition: Vec.h:608
 
Vec< MM, ELT, STRIDE > & updSubVec(int i)
Extract a writable reference to a sub-Vec with size known at compile time. 
Definition: Vec.h:835
 
Vec< M, typename CNT< E >::template Result< P >::Sub, 1 > Sub
Definition: Vec.h:379
 
CNT< E >::TInvert EInvert
Packed type that can hold the value returned from invert(E), the inverse type of an element...
Definition: Vec.h:224
 
Matrix_< typename CNT< E1 >::template Result< E2 >::Add > operator+(const MatrixBase< E1 > &l, const MatrixBase< E2 > &r)
Definition: BigMatrix.h:568
 
Vec< M, EComplex, STRIDE > TComplex
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:278
 
Vec< M+1, ELT, 1 > append1(const EE &v) const 
Return a vector one larger than this one by adding an element to the end. 
Definition: Vec.h:875
 
const Vec< MM, ELT, STRIDE > & getSubVec(int i) const 
Extract a const reference to a sub-Vec with size known at compile time. 
Definition: Vec.h:825
 
This class represents a small matrix whose size is known at compile time, containing elements of any ...
Definition: SimTKcommon/include/SimTKcommon/internal/common.h:607
 
Vec & scalarDivideEqFromLeft(int ee)
Definition: Vec.h:806
 
K::TComplex TComplex
Definition: CompositeNumericalTypes.h:143
 
Vec & scalarTimesEq(int ee)
Definition: Vec.h:802
 
K::Number Number
Definition: CompositeNumericalTypes.h:162
 
Vec & operator+=(const Vec< M, EE, SS > &r)
Add in a conforming Vec, of any element type and stride, provided that the element types are addition...
Definition: Vec.h:531
 
Row< M, E, STRIDE > TPosTrans
Type of this Vec after casting to its positional transpose; that is, the Vec turns into a Row but the...
Definition: Vec.h:285
 
bool isInf() const 
Return true if any element of this Vec contains a +Infinity or -Infinity somewhere but no element con...
Definition: Vec.h:925
 
Vec & scalarDivideEq(const EE &ee)
Definition: Vec.h:793
 
static K getNaN()
Definition: CompositeNumericalTypes.h:246
 
Vec & operator-=(const Vec< M, negator< EE >, SS > &r)
Subtract off a conforming Vec, of any negated element type and stride, provided that the element type...
Definition: Vec.h:546
 
static Vec & updSubVec(Vec< MM, ELT, STRIDE > &v, int i)
Extract a subvector of type Vec from a longer one that has the same element type and stride...
Definition: Vec.h:853
 
Vec(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4)
Definition: Vec.h:494
 
Vec< M, ENeg, STRIDE > TNeg
Type this Vec would have if its elements were interpreted as negated. 
Definition: Vec.h:266
 
CNT< E >::Number ENumber
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:230
 
ELT E
Element type of this Vec. 
Definition: Vec.h:191
 
EScalarNormSq ScalarNormSq
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:311
 
K::TSqHermT TSqHermT
Definition: CompositeNumericalTypes.h:146
 
bool isNumericallyEqual(const Vec< M, E2, RS2 > &v) const 
Test whether this vector is numerically equal to some other vector with the same shape, using a default tolerance which is the looser of the default tolerances of the two objects being compared. 
Definition: Vec.h:965
 
bool operator>(const Row< N, E1, S1 > &l, const Row< N, E2, S2 > &r)
bool = v1[i] > v2[i], for all elements i 
Definition: Row.h:833
 
Vec(const E &e0, const E &e1, const E &e2, const E &e3, const E &e4, const E &e5)
Definition: Vec.h:497
 
CNT< E >::ULessScalar EULessScalar
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:229
 
AddOp::Type Add
Definition: Vec.h:403
 
Vec TCol
Type of a column of this CNT object (for a Vec, the whole thing). 
Definition: Vec.h:291
 
EULessScalar ULessScalar
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:307
 
K::THerm THerm
Definition: CompositeNumericalTypes.h:144
 
Vec()
Default construction initializes Vec's elements to NaN when debugging but leaves them uninitialized g...
Definition: Vec.h:423
 
Vec< M, typename CNT< E >::template Result< EE >::Sub > conformingSubtract(const Vec< M, EE, SS > &r) const 
Vector subtraction – use operator- instead. 
Definition: Vec.h:561
 
Vec< M, typename CNT< E >::template Result< EE >::Dvd > scalarDivide(const EE &e) const 
Definition: Vec.h:737
 
Vec & scalarMinusEq(const EE &ee)
Definition: Vec.h:785
 
static int ncol()
The number of columns in a Vec is always 1. 
Definition: Vec.h:320
 
EScalar Scalar
These compile-time constants are required of every Composite Numerical Type (CNT). 
Definition: Vec.h:306
 
Vec(const Vec< M, E, SS > &src)
This is an implicit conversion from a Vec of the same length and element type but with a different st...
Definition: Vec.h:450
 
Vec & scalarDivideEqFromLeft(const EE &ee)
Definition: Vec.h:795
 
const TWithoutNegator & castAwayNegatorIfAny() const 
Recast to remove negators from this Vec's type if present; this is handy for simplifying operations w...
Definition: Vec.h:706
 
Vec(int i)
Given an int value, turn it into a suitable floating point number, convert that to element type E and...
Definition: Vec.h:483
 
CNT< E >::TNeg ENeg
Negated version of this Vec's element type; ENeg==negator< E >. 
Definition: Vec.h:193
 
void conformingAdd(const Row< 1, E1, S1 > &r1, const Row< 1, E2, S2 > &r2, Row< 1, typename CNT< E1 >::template Result< E2 >::Add > &result)
Definition: Row.h:45
 
Vec< M, typename CNT< EE >::template Result< E >::Dvd > scalarDivideFromLeft(const EE &e) const 
Definition: Vec.h:743
 
Vec & operator-=(const Vec< M, EE, SS > &r)
Subtract off a conforming Vec, of any element type and stride, provided that the element types are ad...
Definition: Vec.h:541
 
DvdOp::Type Dvd
Definition: Vec.h:398
 
Vec< M, EWithoutNegator, STRIDE > TWithoutNegator
Type of this Vec with negator removed from its element type, if the element is negated. 
Definition: Vec.h:269
 
Vec< M, typename CNT< E >::template Result< P >::Dvd, 1 > Dvd
Definition: Vec.h:377
 
static const Vec & getAs(const ELT *p)
Recast an ordinary C++ array E[] to a const Vec<M,E,S>; assumes compatible length, stride, and packing. 
Definition: Vec.h:902
 
K::TAbs TAbs
Definition: CompositeNumericalTypes.h:155
 
bool isNumericallyEqual(const float &a, const float &b, double tol=RTraits< float >::getDefaultTolerance())
Compare two floats for approximate equality. 
Definition: NTraits.h:313
 
MulCNTs< M, 1, ArgDepth, Vec, ColSpacing, RowSpacing, CNT< P >::NRows, CNT< P >::NCols, CNT< P >::ArgDepth, P, CNT< P >::ColSpacing, CNT< P >::RowSpacing > MulOp
Definition: Vec.h:387